ALMA MATER STUDIORUM – UNIVERSITA' DI BOLOGNA SCUOLA DI INGEGNERIA E ARCHITETTURA

Dipartimento di Ingegneria dell'Energia Elettrica e dell'informazione "Guglielmo Marconi"

TESI DI LAUREA in Automatic Controls

Agricultural Field Detection and Coverage Path Planning for an Unmanned Aerial Vehicle

CANDIDATO: Michael Rimondi

RELATORE: Prof. Lorenzo Marconi

> CORRELATORI: Ing. Nicola Mimmo

Sessione II

Bambi Project

Wildlife search and rescuing operations over agricultural area made easy and automatic

Bambi Project Main tasks

- Georeferencing the mission's environment and identify the field boundary;
- Calculate the coverage path;
- Generate a timed dependent trajectory taking into account dynamic constraints of the vehicle;
- Make the drone follow the computed trajectory while avoiding obstacles;

Field Detection & Representation Keyhole Markup Language (KML)

KML is an XML language focused on geographic visualization, including annotation of maps and images.

1	xml version="1.0" encoding="UTF-8"?
2	<pre><kml xmlns="http://www.opengis.net/kml/2.2"></kml></pre>
3	<document></document>
4	<name>Shapes</name>
5	<style id="thickLine"></td></tr><tr><td>6</td><td><LineStyle></td></tr><tr><td>7</td><td><width>2.5</width></td></tr><tr><td>8</td><td></LineStyle></td></tr><tr><td>9</td><td></style>
10	<pre><style id="transparent50Poly"></pre></td></tr><tr><td>11</td><td><PolyStyle></td></tr><tr><td>12</td><td><color>7fffffff</color></td></tr><tr><td>13</td><td></PolyStyle></td></tr><tr><td>14</td><td></style></pre>
15	<placemark></placemark>
16	<name>Waldpeter Field Boundary</name>
17	<pre><description>Field Border</description></pre>
18	<linestring></linestring>
19	<coordinates></coordinates>
20	11.491609399895651,46.453469568513725,0
21	11.491755810622863,46.45338389393535,0
22	OMITTED COORDINATES
23	11.49140555201052,46.45356658266721,0
24	11.491609399895651,46.453469568513725,
25	
26	
27	<styleurl>#thickLine</styleurl>
28	
29	
30	

Coverage Path Planning (CPP) consist of finding a trajectory for a mobile robot such that a target **area** is **completely swept** by the sensor footprint.

Approximate Cellular Decomposition

Wave-front propagation

		15	15	15	15																									
	14	14	14	14	14	14	14																							
	13	13	13	13	13	13	13	13	13																					
	12	12	12	12	12	12	12	12	12	12																				
	11	11	11	11	11	11	11	11	11	11	11	11	12	13																
	11	10	10	10	10	10	10	10	10	10	10	11	12	13	14	15	16													
	11	10	9	9	9	9	9	9	9	9	10	11	12	13	14	15	16	17	18	19										
	11	10	9	8	8	8	8	8	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23						
Y				8	7	7	7	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25				
						6	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27		
	0					5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	
	1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	
	2	2	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	
	3	3	3	3	4	5	6	7	8				12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27		
	4	4	4	4	4	5	6	7							14	15	16	17	18	19	20	21	22	23	24	25	26			
	5	5	5	5	5	5	6	7																						

G

Coverage Path Generation

Path Smoothing

Coverage Path Planning Different Goal Position

Simulation Results

Future works

Environment representation:

• Image recognition based on AI for field detection

CPP:

• **Consider others cost functions** then the planar distance only (e.g. Terrain elevation profile)

Thank You for the attention!

ALMA MATER STUDIORUM – UNIVERSITA' DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione "Guglielmo Marconi"

TESI DI LAUREA in Automatic Controls

Autonomous Navigation Algorithm with Collision Avoidance for an Unmanned Arial Vehicle

CANDIDATO: Florian Mahlknecht

RELATORE: Prof. Lorenzo Marconi

> CORRELATORI: Ing. Nicola Mimmo

Anno Accademico 2017/18

Sessione II

Bambi Project Main tasks

- Georeferencing the mission's environment and identify the field boundary
- Calculate the coverage path
- Generate a **timed dependent trajectory** considering dynamic constraints
- Follow the computed trajectory while avoiding obstacles

System Architecture

Illustration

System Architecture Realization

Starting Point Geometric Trajectory

Starting Point PX4 Flight Controller

$$\exists \langle t_j \rangle_{j \le n} \mid \boldsymbol{r}^*(t_j) = \boldsymbol{p}_j$$

Problem Description 1

Trajectory Generation

 $\|\dot{\boldsymbol{r}}^*(t)\| \leq v_{max}$

$$\langle \boldsymbol{r}^{*}_{k} \rangle_{k < = m} = \langle \boldsymbol{r}^{*}_{1}, \boldsymbol{r}^{*}_{2}, ..., \boldsymbol{r}^{*}_{m} \rangle$$

with $\boldsymbol{r}^{*}_{k} = \boldsymbol{r}^{*} \left(\frac{k}{f_{sp}} \right)$

Constant Velocity Trajectory Generation

Velocity Feed Forward PX4 Flight Controller

Generated Trajectory Velocity Vector Plot

Simulation Results Standard Position vs Feed Forward Control

Simulation Results

Standard Position vs Feed Forward Control

Collision Avoidance

Security Measure

Collision Avoidance

Security Measure

Problem Description 2 Collision Avoidance

$$\hat{a}_{collision} = \frac{1}{\int_0^{2\pi} w(d(\theta)) d\theta} \int_0^{2\pi} w(d(\theta)) \begin{pmatrix} -\cos\theta \\ -\sin\theta \end{pmatrix} d\theta$$

$$x(t) = v_0 t - \frac{1}{2} a_{req} t^2 \qquad a_{req} = \frac{v_0^2}{2 d_{stop}}$$

$$\Rightarrow w(d) \propto \frac{1}{d}$$

Weight Function Control Action

Simulation Results

Thrust Impact

Simulation Results Qualitative Evaluation

Advantages

- Easy implementation
- Low Latency
- Always enabled (Security)

Disadvantages

- Local minima
- No reference trajectory correction
- Reliable measurements needed

Conclusion Future Works

Optimal Control
Field Experiments

Q&A

Thank you for having me