
High Performance Computing
for Science and Engineering II.

Exercise Set 6

Florian Mahlknecht

2020-05-31

1 Q1: Reduction

1.1 Warp Level
To propagate the reduction results to all threads, the following implementation has been chosen:

1 double sum = a;
2 sum += __shfl_xor_sync(0xFFFFFFFF, sum, 1);
3 sum += __shfl_xor_sync(0xFFFFFFFF, sum, 2);
4 sum += __shfl_xor_sync(0xFFFFFFFF, sum, 4);
5 sum += __shfl_xor_sync(0xFFFFFFFF, sum, 8);
6 sum += __shfl_xor_sync(0xFFFFFFFF, sum, 16);
7 return sum;

Listing 1: Warp level reduction

Similarly the case of argmax has been handeled.

1.2 Block level reduction
At block level shared memory is exploited:

1 double result = sumWarp(a);
2 __shared__ double sdata[32];
3

4 if (threadIdx.x % 32 == 0)
5 sdata[threadIdx.x / 32] = result;
6 __syncthreads();
7

8 if (threadIdx.x < 32) {
9 result = sumWarp(sdata[threadIdx.x]);
10 }
11

12 return result;

Listing 2: Block level reduction

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2020-05-31 Page 1 of 5

mailto:fmahlknecht@student.ethz.ch


Exercise Set 6 High Performance Computing II.

1.3 1024 blocks

To further reduce across blocks, without overwriting the source array, additional global memory
is needed. �erefore a bu�er has been allocated and a simple function which saves the previously
obtained block level results to this bu�er, according to the blockIdx.x. A subsequent use of this
function completes the task:

1 int numBlocks = (N+1024-1)/1024;
2

3 if (numBlocks > 1) {
4 double* bufferDev;
5 CUDA_CHECK(cudaMalloc(&bufferDev, numBlocks * sizeof(double)));
6 CUDA_LAUNCH(sumReduce, numBlocks, 1024, aDev, bufferDev, N);
7 CUDA_LAUNCH(sumReduce, 1, 1024, bufferDev, bDev, numBlocks);
8 CUDA_CHECK(cudaFree(bufferDev));
9 } else {
10 CUDA_LAUNCH(sumReduce, 1, 1024, aDev, bDev, N);
11 }

Listing 3: Across blocks

1 __global__ void sumReduce(const double *aDev, double *bDev, int N) {
2 int idx = blockIdx.x * blockDim.x + threadIdx.x;
3

4 double a = idx < N ? aDev[idx] : 0.0;
5 double sum = sumBlock(a);
6

7 if (threadIdx.x == 0)
8 bDev[blockIdx.x] = sum; // atomicAdd(bDev, sum);
9 }

Listing 4: Sum reduce

For compute capability > 6.0, another option, wihtout the need of additional bu�er, is given
as a comment in listing 4. Given the blocking nature however, the performance of the atomicAdd
is excpeted to drop compared to the bu�ered approach.

1.4 Larger arrays

�e code given in listing 3 works for arrays up to 10242 elements. At this limit, the results from
the block reduction cannot be elaborated anymore within 1024 threads. �erefore the code needs
to be extended in a recursive fashion. �is means that the results from the �rst block reduction
are fed into the same function again (with the bu�er as input and output), until ≤ 1024 elements
are le� and therefore a single block reduction can be used to produce one single result.

�e descirbed approach would work until themaximumnumber of blocks in a kernel launch is
reached for the �rst kernel execution, i.e. for 64Mi elements. A�erwords multiple subsequent ker-
nels launches need to be scheduled with shi�ed input and output arrays. �is part is implemented
in the benchmarking code of section 3.

Page 2 of 5 2020-05-31 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch


High Performance Computing II. Exercise Set 6

In this way larger arrays up to the GPU memory bound limit, accounting also for the linearly
growing bu�er demand, could be handled.

2 Q2: SSA - Trajectory Binning

A test run on Piz Daint of the SSA algorithm yields:

class34@nid02356:~/hpcse-ii/hw6/p2/build> ./ssa
Testing blocksDoneKernel...

Passed.
SSA_GPU numItersPerPass: 1000 numSamples: 200000 required memory: ~1722.8MB
===== DIMERIZATION =====
Execution Loop 0. Remaining samples: 200000/200000
Execution Loop 1. Remaining samples: 200000/200000
Execution Loop 2. Remaining samples: 0/200000
Average number of time steps per sample: 0.617655

With respect to the CPU version, implemented in homework 4, this GPU version executes
the simulation much faster. Figure 1 shows the ouput of both versions, which remains similar as
expected.

(a) CPU (b) GPU

Figure 1: SSA Output Plot

3 Q3: Communication pipelining

�e benchmarking run gives the following results:

class34@nid02358:~/hpcse-ii/hw6/p3> ./overlap
sync fastK N= 1000000 up=0.000673s k=0.000017s down=0.000650s tot=0.001339s
sync fastK N=100000000 up=0.064111s k=0.000020s down=0.063604s tot=0.127734s
async fastK N=100000000 chunkSize=100000000 numStreams=1 time=0.127761s
async fastK N=100000000 chunkSize= 10000000 numStreams=4 time=0.082381s
async fastK N=100000000 chunkSize= 10000000 numStreams=8 time=0.082281s
async fastK N=100000000 chunkSize= 1000000 numStreams=4 time=0.083859s

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2020-05-31 Page 3 of 5

mailto:fmahlknecht@student.ethz.ch


Exercise Set 6 High Performance Computing II.

async fastK N=100000000 chunkSize= 1000000 numStreams=8 time=0.081317s

sync slowK N= 1000000 up=0.000672s k=0.000017s down=0.006218s tot=0.006906s
sync slowK N=100000000 up=0.064113s k=0.000020s down=0.601602s tot=0.665734s
async slowK N=100000000 chunkSize=100000000 numStreams=1 time=0.665768s
async slowK N=100000000 chunkSize= 10000000 numStreams=4 time=0.553544s
async slowK N=100000000 chunkSize= 10000000 numStreams=8 time=0.553515s
async slowK N=100000000 chunkSize= 1000000 numStreams=4 time=0.542378s
async slowK N=100000000 chunkSize= 1000000 numStreams=8 time=0.542342s

Generally, the asynchronous approach with performs better for a stream number > 1 with the
fast kernel, whereas the speedup with the slow kernel is not as signi�cant. �is has to be expected,
since the kernels occupy all the available SMs, and therefore cannot be run in parallel.

Furthermore, one can observe that doubling the streams in the asynchronous run from 4 to
8 does not give further bene�ts. �e timings remain essentially stable at around 80ms for the
asynchronous calls of the fast kernel and 550ms for the slow kernel. Lowering the chunk size in
the slow kernel gives an improvement of around 10ms, whereas with the fast kernel the impact is
negligible.

Figures 2 and 3a compare the pro�ling results of the pipelining approach for the fast and the
slow kernel respectively.

(a) Sequential (b) Pipelining

Figure 2: Fast Kernel Pro�ling

As discussed before already, the GPU can perform only one kernel execution at a given time
step. �is can be appreciated especially when looking at �gs. 2b and 3b. �e memory operations
on the other hand, can be executed simultaneously, one H2D, and one D2H, as shown in �g. 2b.

Page 4 of 5 2020-05-31 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch


High Performance Computing II. Exercise Set 6

(a) Sequential

(b) Pipelining

Figure 3: Slow Kernel Pro�ling

�is memory operation parallelism can not be exploited in the same fashion anymore when
the kernel becomes signi�cantly slower, as �g. 3b illustrates. Instead of two overlapping memory
operation, just one compute and one memory operation is executed at a time. �e results take
too long to compute, and before the write back could be executed, all bu�ers have already been
uploaded to the device.

�e suspect is con�rmed with the �nal result presented in table 1. As discussed before, the
improvement for the fast kernel is more signi�cant. However, in both cases pipelining provides
an advantage.

Type Start [s] End [s] Time [ms] Change [%]

Slow Kernel Sequential 2.46 3.13 666.46
Slow Kernel Pipelining 3.86 4.42 553.84 -16.90%
Fast Kernel Sequential 0.77 0.89 127.82
Fast Kernel Pipelining 1.64 1.72 82.62 -35.36%

Table 1: Pipelining Comparison

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2020-05-31 Page 5 of 5

mailto:fmahlknecht@student.ethz.ch

	Q1: Reduction
	Warp Level
	Block level reduction
	1024 blocks
	Larger arrays

	Q2: SSA - Trajectory Binning
	Q3: Communication pipelining

