
High Performance Computing
for Science and Engineering II.

Exercise Set 4

Florian Mahlknecht

2020-04-25

Please note that this report does not contain any source code, see �les attached for the
implementation details.

1 Stochastic Simulation Algorithm

1.1 Inverse transformation of cumulative distribution function
Exponential distribution Given the following probability distribution

p(x) = τ e−τ x x ≥ 0 (1)

we may calculate its cumulative distribution function:

Fx(x) = ∫
x

0
τ e−τ ydy = −e−τ y ∣x0 = 1 − e−τ x

Using a random variable u uniformly distributed in [0, 1] we can sample x by solving:

u = 1 − e−τ x

log(1 − u) = −τ x

⇒ x = − log(1 − u)
τ

Categorical distribution Considering a categorical distribution with 4 possible outcomes we
have:

P(X = r) = ar
a0

a0 =
4

∑
i=1

ai (2)

In this case the cumulative distribution function reads:

P(X ≤ r) =
r
∑
i=1

ai
a0

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2020-07-01 Page 1 of 8

mailto:fmahlknecht@student.ethz.ch

Exercise Set 4 High Performance Computing II.

Using the uniformly distributed variable u ∈ [0, 1] again, we get:

u =
r
∑
i=1

ai
a0

u a0 =
r
∑
i=1

ai

sr ∶=
r
∑
i=1

ai

⇒ r(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 for u a0 ≤ s1
2 for s1 < u a0 ≤ s2
3 for s2 < u a0 ≤ s3
4 for u a0 > s3

1.2 Sample output
Figure 1 shows an exemplary output of the implementation, which matches the expected �gure.

0 1 2 3 4 5
Time

2

4

6

8

10

12

14

Se
pc
ie
s Q

ua
nt
ity

S1
S2

Figure 1: Sample output

1.3 Performance evaluation

Number of threads 40% - Quantil 60% - Quantil

1 0.609 0.610
2 1.161 1.172
4 2.081 2.088
8 3.722 3.974
16 3.233 3.409

Table 1: Scaling performance [GFLOP/s]

As table 1 shows, a�er 8 threads there is no gain in performance anymore. �e �op per byte ratio
remains as expected constant throughout the experiment; its value is around 1.25 Flop/Byte.

Page 2 of 8 2020-07-01 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch

High Performance Computing II. Exercise Set 4

2 CMA-ES Parameter Search

It is interesting to see that the CMA-ES parameter search does not converge to the expected values.
Table 2 illustrates the results for di�erent population size parameters.

p = 2 p = 4 p = 8 p = 16 p = 32 ⋆

k1 3.331 2.641 2.305 2.619 2.796 1.0
k2 0.019 1.826 2.832 0.193 0.936 1.0
k3 2.560 0.535 0.468 0.529 0.566 0.2
k4 48.931 48.752 48.546 40.079 46.448 20

S1 14.702 15.072 15.019 15.002 15.038 14.837
S2 1.341 4.999 4.990 4.996 4.985 5.133

SSE 13.477 5.180 ⋅ 10−3 0.451 ⋅ 10−3 0.018 ⋅ 10−3 1.697 ⋅ 10−3 44.258 ⋅ 10−3

Table 2: Results with varying population size

Except the population size of only 2, the found parameters by CMA-ES perform all better
than the expected theoretic onces. �is underlines how theoretically expected outcome for a large
numbers of reaction cannot exactly be observed in a random experiment with a small amount of
reactions. Indeed our theoretical parameters yield an outcome which is o� by approximately 0.15.

�e evaluation was performed by a small test program, i.e. ssa_test, which runs the simula-
tion several time with parameters speci�ed as command line arguments and averages the result.
�e given S1 and S2 in table 1 values are in this way an average over 10 test runs. �e sum of
sqaured errors is calculated on those values. �is is important to note, as the random nature of
our objective function, allows the CMA-ES algorithm “to get lucky”, and get a lower SSE in a
speci�c evaluation step. �is is why the calculated value on averaged S1, S2 is di�erent from the
F(x) output of the korali framework.

�e best result in this case is obtained with a population size of 16. �e outcomes are just
o� byO(10−3) from the desired S1 and S2. A population size of 32, besides of not yielding better
results, takes signi�cantly longer to compute. Note however, that the SSE found by the Korali
framework for the best sample is in the same order of magnitude as the one for population size 16,
however on the averaged values, p = 16 is clearly better.

Figure 2 shows how the objective variables converged for the various experiments.

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2020-07-01 Page 3 of 8

mailto:fmahlknecht@student.ethz.ch

Exercise Set 4 High Performance Computing II.

0 20 40 60 80 100

10−2

10−1

100

101

102

|F|
|F− Fbest|

κ(C)
σ

||pσ||

0 20 40 60 80 100
0

10

20

30

40

50
Objective Variables

k1
k2
k3
k4

0 20 40 60 80 100

10−1

100

Sq are Root of Eigenval es of C

0 20 40 60 80 100

10−2

10−1

100

101

σ√diag(C)

CMAES Diagnostics

(a) Population size 2
0 20 40 60 80 100

10−4

10−2

100

102

|F|
|F− Fbest|

κ(C)
σ

||pσ||

0 20 40 60 80 100
0

10

20

30

40

50
Objective Variables

k1
k2
k3
k4

0 20 40 60 80 100

10−1

100

Sq are Root of Eigenval es of C

0 20 40 60 80 100

10−2

10−1

100

101

σ√diag(C)

CMAES Diagnostics

(b) Population size 4

0 20 40 60 80 100

10−4

10−2

100

102

104

|F|
|F− Fbest|

κ(C)
σ

||pσ||

0 20 40 60 80 100
0

10

20

30

40

50
Objective Variables

k1
k2
k3
k4

0 20 40 60 80 100

10−2

10−1

100

Sq are Root of Eigenval es of C

0 20 40 60 80 100
10−3

10−2

10−1

100

101

σ√diag(C)

CMAES Diagnostics

(c) Population size 8
0 20 40 60 80 100

10−7

10−5

10−3

10−1

101

103

105

107

|F|
|F− Fbest|

κ(C)
σ

||pσ||

0 20 40 60 80 100
0

10

20

30

40

50
Objective Variables

k1
k2
k3
k4

0 20 40 60 80 100

10−3

10−2

10−1

100

Square Roo of Eigenvalues of C

0 20 40 60 80 100

10−2

10−1

100

101

σ√diag(C)

CMAES Diagnostics

(d) Population size 16

0 20 40 60 80 100

10−5

10−3

10−1

101

103

105

107

|F|
|F− Fbest|

κ(C)
σ

||pσ||

0 20 40 60 80 100
0

10

20

30

40

50
Objective Variables

k1
k2
k3
k4

0 20 40 60 80 100

10−4

10−3

10−2

10−1

100

Square Roo of Eigenvalues of C

0 20 40 60 80 100

10−2

10−1

100

101

σ√diag(C)

CMAES Diagnostics

(e) Population size 32

Figure 2: Population size behavior

Page 4 of 8 2020-07-01 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch

High Performance Computing II. Exercise Set 4

3 Parallelization with UPC

�e sequential approach takes about 9 s on Euler, yielding the following output:

./sequential
Approximating the value of PI with 240000 series coefficients.
PI approximate: 3.1415884869231183
PI: 3.1415926535897931
Absolute error: 4.1666666747985914e-06
Total Running Time: 9.1781152220000006 s

3.1 Divide et impera

A�er parallelizing with a divide et impera strategy, we get the following output:

upcxx-run -n 24 ./divideAndConquer
Approximating the value of PI with 240000 series coefficients.
PI approximate: 3.1415884869231183
PI: 3.1415926536
Absolute error: 4.1666666747985914e-06
Total Running Time: 1.1779726230000001s

As expected the absolute error yields the same, which proofs that the execution is equivalent
with respect to the sequential approach. From absolute running time numbers (without averaging
over more execution times) we can make a rough estimate of the speedup:

S =
Tseq

Tparal l el
≈ 7.79 (3)

Given that we have provided 24 times as much resources, the speed up e�ciency is rather
poor:

η = S
Sopt

= 32% (4)

3.1.1 Load Imbalance

As �g. 3 shows, the load is not divided equally among the ranks. In particular, the coe�cients for
larger k take longer to compute. Since we simply divide the computation in linear partitions the
di�erence in computation time between the �rst and the 24th rank is quite considerable.

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2020-07-01 Page 5 of 8

mailto:fmahlknecht@student.ethz.ch

Exercise Set 4 High Performance Computing II.

Figure 3: Rank times divide and conquer

Indeed, the load imbalance ratio is signi�cantly high (see modi�ed python script):

R = Lmax − L̄
L̄

= 0.70 (5)

3.2 Producer Consumer

�e second strategy yields the following results:

upcxx-run -n 24 ./producerConsumer
Approximating the value of PI with 240000 series coefficients.
PI approximate: 3.1415884869231183
PI: 3.1415926536
Absolute error: 4.1666666747985914e-06
Total Running Time: 0.84135654999999998s

Again the same exact absolute error and approximate PI outcome shows that the code execution
is equivalent to the the former approaches.

Page 6 of 8 2020-07-01 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch

High Performance Computing II. Exercise Set 4

Figure 4: Rank times producer consumer

Figure 4 now e�ectively illustrates, that the load is much better (almost perfectly) distributed.
�e actual compute ranks have a computation time of 0.679 s. �e speedup, considering the total
running time, is:

S =
Tseq

Tparal l el
≈ 10.91 (6)

Considering only the ranks that actually carry out the computation, we get a speedup of
S = 13.52, which yields a considerably better e�ciency:

η = S
Sopt

= 56% (7)

3.2.1 Load imbalance

�e load imbalance ratio, as �g. 4 already suggests, is considerably better:

R = Lmax − L̄
L̄

= 0.23 (8)

3.3 Comparison

Figure 5 shows a �nal comparison of the scaling performance of the total running times averaged
over 5 consecutive executions. It is interesting to note, that with two ranks, the consumer-producer
strategy actually performs worse than the sequential approach. �is can simply be explained,
that with just two total ranks, there is just one computational node, while the other node just
communicates with it. �is is clearly worse than having just one process alone performing the
computation.

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2020-07-01 Page 7 of 8

mailto:fmahlknecht@student.ethz.ch

Exercise Set 4 High Performance Computing II.

1 2 4 8 16 24

Ranks

1
2

4

8

16

24

S
p

e
e

d
u

p

Strong scaling comparison

Producer-Consumer

Divide and Conquer

Ideal

Figure 5: Speedup comparison

3.4 Discussion
As we have seen in this example, the producer-consumer strategy can have advantages when
the tasks are not balanced. Considering again �gs. 3 and 4 we can appreciate how well this
approaches balances out the load. However, this approaches requires that the task can be split up
in enough junks, such that the overall load can be divided evenly, but still large enough tasks that
communication keeps being worth it. Furthermore, some knowledge about the execution time is
preferable, to tackle the big tasks �rst, avoiding large tasks degrading load balance at the end.

If the tasks are known to be equally heavy on the other side, the divide et impera approach
might be better suited, since it shows a much lower communication overhead.

Page 8 of 8 2020-07-01 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch

	Stochastic Simulation Algorithm
	Inverse transformation of cumulative distribution function
	Sample output
	Performance evaluation

	CMA-ES Parameter Search
	Parallelization with UPC
	Divide et impera
	Load Imbalance

	Producer Consumer
	Load imbalance

	Comparison
	Discussion

