
High Performance Computing
for Science and Engineering I.

Exercise Set 6

Florian Mahlknecht

2019-12-20

1 Di�usion with ADI

1.1 ADI Scheme Derivation
�e partial di�erential equation to treat is the di�usion equation in 2 dimension:

∂ϕ(x , y, t)
∂t

= D∇2ϕ(x , y, t) (1)

�e idea of Peaceman-Rachford is to combine the unconditional stability of implicit forward
schemes with the computational convenience of the �omas algorithm from the 1D case in the 2
dimensional case. �e key step is to treat the x and y directions independently and insert a half
step in between, where implicitly and explicitly calculated directions are swapped for the next
half step. In this way the method gets unconditionally stable.
In the �rst step we use the explicit scheme in the x direction and the implicit (or backward)

euler scheme in the y direction. From eq. (1) in this way we obtain:

ϕ(n+1/2)i , j − ϕ(n)i , j
∆t
2

= D
⎛
⎝
ϕ(n)i−1, j − 2ϕ

(n)
i , j + ϕ(n)i+1, j

∆ x2
+
ϕ(n+1/2)i , j−1 − 2ϕ(n+1/2)i , j + ϕ(n+1/2)i , j+1

∆ y2
⎞
⎠

(2)

In the second step we swap the directions for the explicit and implicit approach:

ϕ(n+1)i , j − ϕ(n+1/2)i , j
∆t
2

= D
⎛
⎝
ϕ(n+1)i−1, j − 2ϕ

(n+1)
i , j + ϕ(n+1)i+1, j

∆ x2
+
ϕ(n+1/2)i , j−1 − 2ϕ(n+1/2)i , j + ϕ(n+1/2)i , j+1

∆ y2
⎞
⎠

(3)

By assuming an equispaced grid, i.e. ∆x = ∆y = ∆s and multiplying both equations by ∆t2 , we
can conveniently introduce a new constant C = ∆t D2 ∆s2 , yielding:

Step 1: ϕ(n+1/2)i , j − ϕ(n)i , j = C (ϕ
(n)
i−1, j − 2ϕ

(n)
i , j + ϕ(n)i+1, j + ϕ(n+1/2)i , j−1 − 2ϕ(n+1/2)i , j + ϕ(n+1/2)i , j+1 )

Step 2: ϕ(n+1)i , j − ϕ(n+1/2)i , j = C (ϕ(n+1)i−1, j − 2ϕ
(n+1)
i , j + ϕ(n+1)i+1, j + ϕ(n+1/2)i , j−1 − 2ϕ(n+1/2)i , j + ϕ(n+1/2)i , j+1 )

By rearranging the terms such that the "newer" terms are all on the le� hand side, i.e. in step
one the (n + 1/2) and the n + 1 terms in step two respectively, we get:

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-12-20 Page 1 of 5

mailto:fmahlknecht@student.ethz.ch


Exercise Set 6 High Performance Computing I.

Step 1: − C ϕ(n+1/2)i , j−1 + (1 + 2C)ϕ(n+1/2)i , j − C ϕ(n+1/2)i , j+1 = C ϕ(n)i−1, j + (1 − 2C)ϕ
(n)
i , j + C ϕ(n)i+1, j

Step 2: − C ϕ(n+1)i−1, j + (1 + 2C)ϕ
(n+1)
i , j − C ϕ(n+1)i+1, j = C ϕ(n+1/2)i , j−1 + (1 − 2C)ϕ(n+1/2)i , j + C ϕ(n+1/2)i , j+1

For the right hand sides we introduce:

b(n)i , j = C ϕ(n)i−1, j + (1 − 2C)ϕ
(n)
i , j + C ϕ(n)i+1, j

b(n+1/2)i , j = C ϕ(n+1/2)i , j−1 + (1 − 2C)ϕ(n+1/2)i , j + C ϕ(n+1/2)i , j+1

By including boundary cells 0 andM + 1 respectively as well as their boundary condition we
get:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . . . . . . . 0
−C (1 + 2C) −C 0 . . . ⋮
0 ⋱ ⋱ ⋱ ⋱ 0
⋮ . . . 0 −C (1 + 2C) −C
0 . . . . . . . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ(n+1/2)i ,0
ϕ(n+1/2)i ,1

⋮
ϕ(n+1/2)i ,M
ϕ(n+1/2)i ,M+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
b(n)i ,1
⋮

b(n)i ,M
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

And in a completely analogous fashion for step two:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . . . . . . . 0
−C (1 + 2C) −C 0 . . . ⋮
0 ⋱ ⋱ ⋱ ⋱ 0
⋮ . . . 0 −C (1 + 2C) −C
0 . . . . . . . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ(n+10, j

ϕ(n+11, j
⋮

ϕ(n+1N , j

ϕ(n+1N+1, j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
b(n)1, j
⋮

b(n)N , j
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

�ose two tri-diagonal systems can be e�ciently solved with the �omas algorithm in Θ(N)
and Θ(M) respectively.

1.2 Implementation
Once the solver and themidpoint derivative are implemented, the solution of advance() becomes
straightforward:

1 midpointDerivative(Direction::Y);
2 #pragma omp parallel for
3 for (size_t i=1; i<m_realN-1; ++i)
4 thomasSolver(Direction::X, i);
5

6 midpointDerivative(Direction::X);
7 #pragma omp parallel for
8 for (size_t j=1; j<m_realN-1; ++j)
9 thomasSolver(Direction::Y, j);

Listing 1: Serial particles iterator implementation

All details are in the �les attached.

Page 2 of 5 2019-12-20 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch


High Performance Computing I. Exercise Set 6

1.3 Parallelization

�e openMP implementation can again be found in the �les attached. Note that by using already
parallelized access during the initialization, the implementation should perform well on NUMA
architectures.
Regarding a possible MPI implementation, care needs to be taken on how to divide the grid.

�e boundary conditions could be exchanged in a row and column wise fashion, while leaving
the computation involving them to the very end (allowing asynchronous communication, i.e.
hiding the communication ‘behind’ the calculations). A possible issue with that strategy is the
�omas Algorithm involved, given that it substitutes back in a recursive fashion starting from the
boundary condition.

1.4 Total heat comparison

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

t [s]

0

0.2

0.4

0.6

0.8

1

1.2

to
ta

l 
h
e
a
t

dt = 0.1

dt = 0.01

dt = 0.001

Figure 1: Total heat comparison

Figure 1 compares di�erent ∆ts. No conditional stability is observed anymore, i.e. the solution
does not blow up for large values of ∆t. However, to converge to the right solution, a smaller
value is needed, ∆t = 0.001 works out well as the plot shows.

2 Di�usion with PSE

2.1 Derivation

A derivation is provided in our lecture notes, see �g. 2.

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-12-20 Page 3 of 5

mailto:fmahlknecht@student.ethz.ch


Exercise Set 6 High Performance Computing I.

satisfies these properties. To retain a second order accurate approximation, we
use the mid-point rule to approximate the integral operator and arrive at the
following expression for the second derivative

d2fh
ε

dx2

����
xi

=
1

ε2

N�

p=1

[f(xp) − f(xi)]Vpηε(xi − xp), (21)

where N is the number of quadrature points and ηε corresponds to Equation (7)
(d = 1) with η(x) the Gaussian kernel from Equation (20).

3 Particle Strength Exchange

Particle strength exchange (PSE) is a method that aims at high order approxi-
mations for the diffusion operator in particle systems. Assume q = q(x, t) is the
density of some quantity q (e.g. concentration density) with spatial coordinates
x and t time. We express the integral of the density q over the domain Ω as

Q(t) =

�

Ω

q(x, t) dV. (22)

Assume we discretize the domain Ω using N particles. Equation (22) is then
rewritten in the form

Q(t) =
N�

p=1

�

Ωp

q(x, t) dV =
N�

p=1

Qp(t), (23)

where Ωp ⊆ Ω is the domain occupied by particle p and Qp(t) the “strength”
of the quantity of interest carried by particle p. Note that Vp =

�
Ωp

dV is the

volume of particle p.
Our goal is to solve the diffusion equation

∂f

∂t
= D

∂2f

∂x2
(24)

in a particle system for a function f(x, t) and diffusion coefficient D. For sim-
plicity, we assume a one dimensional system and set d = 1. We are interested
in the integral quantity Q(t) for which we define a function fp(t) as follows

fp(t) =

�
Ωp

q(x, t) dx
�
Ωp

dx
=

Qp(t)

Vp
, (25)

which is defined at each particle location xp. In Equation (21) we have found
a second order accurate approximation for the second derivative, which we now
use together with the function fp(t) to reduce the partial differential equation
of Equation (24) into a system of ordinary differential equations for N particles,
that is

dQi

dt
=

D

ε2

N�

p=1

[QpVi − QiVp]ηε(xi − xp). (26)

Integration of the system can be carried out using a suitable numerical scheme.
The scheme in Equation (26) is called particle strength exchange. Note that the
PSE scheme is conservative for a symmetric kernel ηε.

5Figure 2: Recalls to the derivation treated in class

From equation 26, it can be seen that if we plug in ϕ for Q and use the fact that in our exercise
the volume is assumed to the same for each particle, i.e. Vi = Vj, we can simplify the expression
and obtain:

dϕi

dt
= D
ε2∑j

Vj (ϕ j − ϕi) ηε (xi − x j) (6)

� q.e .d .

2.2 Implementation

�e implementation is pretty straight forward, the main part is shown in the following listing.

Page 4 of 5 2019-12-20 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch


High Performance Computing I. Exercise Set 6

1 for (int i = 0; i < N; ++i) {
2 double sum = 0.0;
3 for (int j = 0; j < N; ++j) {
4 auto dx = particle_dist(x[i], x[j]);
5 auto dy = particle_dist(y[i], y[j]);
6 sum += (phi[j] - phi[i]) * eta_epsilon(dx, dy);
7 }
8 dphi[i] = nu * volume / SQUARE(eps) * sum;
9 }
10

11 // TODO 1c: Implement the forward Euler update of phi_i, as defined in Eq. (2).
12 for (int i = 0; i < N; ++i)
13 phi[i] += dt * dphi[i];

Listing 2: Di�usion with particle methods

Details are provided in the attached source code �les. Figure 3 shows the output of the
generated di�usion video.

Figure 3: Di�usion with ADI video ouptut

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-12-20 Page 5 of 5

mailto:fmahlknecht@student.ethz.ch

	Diffusion with ADI
	ADI Scheme Derivation
	Implementation
	Parallelization
	Total heat comparison

	Diffusion with PSE
	Derivation
	Implementation


