
High Performance Computing
for Science and Engineering I.

Exercise Set 5

Florian Mahlknecht

2019-12-06

1 Gaining intuition in the equations

When considering two vortices Γ1 and Γ2 in their respective initial positions:

x1(0) = (
∆
2
, 0)

x2(0) = (
−∆
2
, 0)

we can evaluate the presented equations of the velocity �eld:

ux(x1, 0) = 0 ⇐⇒ y = 0

uy(x1, 0) =
Γ2
2π
∆
∆2
=
Γ2
2π∆

ux(x2, 0) = 0 ⇐⇒ y = 0

uy(x2, 0) = −
Γ1
2π
∆
∆2
= −

Γ2
2π∆

�us, we get for the case in which Γ1 = Γ2 = Γ:

ẋ1(t) = (
0
1)

Γ
2π∆

t (1)

ẋ2(t) = (
0
−1)

Γ
2π∆

t (2)

Similarly for Γ1 = −Γ2 = Γ:

ẋ1(t) = (
0
−1)

Γ
2π∆

t (3)

ẋ2(t) = (
0
−1)

Γ
2π∆

t (4)

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-12-06 Page 1 of 6

mailto:fmahlknecht@student.ethz.ch


Exercise Set 5 High Performance Computing I.

2 OpenMP scaling

�e general implementation of the particles iterator is given in listing 1. Note that for the usage in
MPI, for convenience a parameter has been added which eventually excludes self interaction, if
the applied sources are actually the same.

1 void compute_interaction(const ArrayOfParticles & sources,
2 ArrayOfParticles & targets, bool excludeSelfInteraction = true)
3 {
4 #pragma omp parallel for
5 for (size_t j = 0; j < sources.size(); ++j) {
6 for (size_t i = 0; i < targets.size(); ++i) {
7

8 if (excludeSelfInteraction && i == j)
9 continue; // exclude self interaction
10

11 auto denominator = (SQUARE(targets.pos_x(j) - sources.pos_x(i))
12 + SQUARE(targets.pos_y(j) - sources.pos_y(i)));
13

14 targets.vel_x(j) += sources.gamma(i) / (2 * M_PI) *
15 (- (targets.pos_y(j) - sources.pos_y(i))) / denominator;
16 targets.vel_y(j) += sources.gamma(i) / (2 * M_PI) *
17 (targets.pos_x(j) - sources.pos_x(i)) / denominator;
18 }
19 }
20 }

Listing 1: Serial particles iterator implementation

Figure 1 shows the scale up of the shared memory parallelization. As expected already, the
dominant contributor to the total time is the computation itself, which is the reason why there is
basically no di�erence in between �gs. 1a and 1b.�e performance was measured for N = 3600.

(a) Main computation time (b) Total time

Figure 1: OpenMP strong scaling

With Paraview the results have furthermore been tested for consistency, yielding the expected
picture, shown in �g. 2.

Page 2 of 6 2019-12-06 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch


High Performance Computing I. Exercise Set 5

Figure 2: Paraview OpenMP data check

For what regards the weak scaling of the openMP implementation, we need to emphasize the
fact the the problem complexity is N2.�is means that a correctly scaled problem for 2 times the
number of threads, is N ′ =

√
2N .

Unfortunately, jobs on Euler are not executed in a timely fashion as expected, see �g. 3.

Figure 3: Euler queue not elaborating tasks in time spans more than 4h

For this reason, a scaled down version has to be executed locally, yielding highly unreli-
able results, since a large enough problem size would be required in order to make the scaling
independent from N .

Figure 4: OpenMPWeak scaling (local notebook results in lack of Euler)

�is unpredictable setup yields indeed an unexpected peak, being of no further meaning for
what regards high performance computing.

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-12-06 Page 3 of 6

mailto:fmahlknecht@student.ethz.ch


Exercise Set 5 High Performance Computing I.

3 MPI implementation

�e core of the MPI implementation is shown in listing 2.

1 for (int i = 1; i < mpi_size; ++i) {
2 auto rankTo = (mpi_rank + i) % mpi_size;
3 auto rankFrom = (mpi_rank + mpi_size - i) % mpi_size;
4

5 assert(n_particles == particles.size());
6

7 MPI_Request mpiReqs[6];
8

9 auto &particles_mpi = (i%2==0) ? particles_mpi1 : particles_mpi2;
10 auto &particles_calc = i == 1 ? particles : ((i%2==0) ? particles_mpi2
11 : particles_mpi1);
12

13 MPI_Isend(particles.pos_x(), n_particles, MPI_VALUE_T, rankTo, //...);
14 MPI_Irecv(particles_mpi.pos_x(), n_particles, MPI_VALUE_T, rankFrom, //... );
15

16 MPI_Isend(particles.pos_y(), n_particles, MPI_VALUE_T, rankTo, //...);
17 MPI_Irecv(particles_mpi.pos_y(), n_particles, MPI_VALUE_T, rankFrom, //...);
18

19 MPI_Isend(particles.gamma(), n_particles, MPI_VALUE_T, rankTo, //...);
20 MPI_Irecv(particles_mpi.gamma(), n_particles, MPI_VALUE_T, rankFrom, //...);
21

22 compute_interaction(particles_calc, particles, i == 1);
23

24 // synchronize to be able to use the buffers again...
25 MPI_Waitall(6, mpiReqs, MPI_STATUSES_IGNORE);
26

27 if (i == mpi_size-1) {
28 // compute last one directly here
29 compute_interaction(particles_mpi, particles, i == 1);
30 }
31 }

Listing 2: MPI communication implementation

By using references we can conveniently change the bu�ers during the iterations without
copying in the loops.
For the same inconvenient scheduling reasons as before (see �g. 3), only results from the local

notebook are available, with N = 500 as a starting point.
Since now the problem is split up into sub-problems for each MPI node, it is important

to emphasize that N needs to be dividable without residue by the number of nodes, since for
simplicity our implementation relies on this.�e numbers for weak scaling have been chosen to
be:

• p = 1, N = 500

• p = 2, N = 706

• p = 3, N = 870

Page 4 of 6 2019-12-06 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch


High Performance Computing I. Exercise Set 5

• p = 4, N = 1000

• p = 8, N = 1400

Note again that the small number of particles was chosen in lack of Euler, to be able to get
results on the local notebook, therefore not representable. On the notebook just di�erent processes
are handled by the operating system’s scheduler. Anyhow the results are shown in �g. 5:

Figure 5: MPI weak scaling (local notebook results in lack of Euler)

Given the unrepresentative nature, strong scaling is not presented.

3.1 Validation
Again the actual output of the simulation has been successfully validated in Paraview, just with
fewer numbers of particles due to the computing power constrained. However, consistent MPI
communication and results have been achieved, see �g. 6:

Figure 6: Paraview MPI data check

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-12-06 Page 5 of 6

mailto:fmahlknecht@student.ethz.ch


Exercise Set 5 High Performance Computing I.

3.2 Hybrid implementation
For the hybrid implementation (even though not working on Euler), just the previously for
OpenMP developed SerialParticlesIterator_parallel.h can be used (see code attached).
�ere is no need for OpenMP threads to send MPI messages, so there is no con�ict in using just
the parallel version to locally calculate the results.
A disadvantage of this straight forward solution is the fact that threads are continuously

spawned and joined in the MPI communication loop.

Page 6 of 6 2019-12-06 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch

	Gaining intuition in the equations
	OpenMP scaling
	MPI implementation
	Validation
	Hybrid implementation


