
High Performance Computing
for Science and Engineering I.

Exercise Set 2

Florian Mahlknecht

2019-10-21

1 Brownian Motion

Having a deeper look on the equation

xi(t + ∆t) = xi(t) + ξ(t)i
√

∆t (1)

we notice that the particles are completely independent and do not in�uence each other. So
we can calculate the �nal position for each particle one by one by iterating over time.�is �ips
the order of the for loops in the provided serial implementation.�e following listings show the
code in the steps requested in the exercise.

With OpenMP the wall time implementation becomes simply listing 1

31 // Returns current wall-clock time in seconds
32 double GetWtime() {
33 return omp_get_wtime();
34 }

Listing 1: GetWtime() implementation

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-10-21 Page 1 of 7

mailto:fmahlknecht@student.ethz.ch

Exercise Set 2 High Performance Computing I.

84 #pragma omp parallel shared(xx)
85 {
86 std::default_random_engine gen;
87

88 auto random = gen();
89 // Seed generator
90 int seed = (omp_get_thread_num() + 1) * random % gen.max();
91 gen.seed(seed);
92

93 // parallel initialization
94 std::uniform_real_distribution<double> dis(-0.5, 0.5);
95 #pragma omp for
96 for (size_t i = 0; i < N; ++i) {
97 xx[i] = dis(gen);
98 }
99

100 #pragma omp single
101 {
102 xx0 = xx;
103 wt0 = GetWtime();
104 }
105

106 std::normal_distribution<double> dis2(0., std::sqrt(dt));
107 #pragma omp for
108 for (size_t i = 0; i < N; ++i) {
109 for (size_t m = 0; m < M; ++m) {
110 xx[i] += dis2(gen);
111 }
112 }
113

114 #pragma omp single
115 {
116 wt1 = GetWtime();
117 wtime_walk = wt1 - wt0;
118 }
119 }

Listing 2: Parallelized time stepping

Listing 2 shows the parallel version of the time stepping calculations. Note that random
number generators have been used inside the parallel region, guaranteeing independent random
values for all threads.�e timing measurments are moved inside a #pragma omp single region,
which implies a barrier before, guaranteeing repeatable measurements.

�e vector xx is shared over the whole region.�e actual calculations are in the two for loops,
which are not collapsed to guarantee a correct splitting of access ranges on the vector throughout
all threads.

Page 2 of 7 2019-10-21 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch

High Performance Computing I. Exercise Set 2

36 std::vector<double> GetHistogram(const std::vector<double>& xx) {
37 std::vector<double> hh(nb, 0);
38 std::vector<std::vector<double>> hh_t(omp_get_max_threads(),
39 std::vector<double>(nb, 0));
40 #pragma omp parallel shared(hh, hh_t)
41 {
42 #pragma omp for
43 for (size_t i = 0; i < xx.size(); ++i) {
44 int j = (xx[i] - xmin) / (xmax - xmin) * nb;
45 j = std::max(0, std::min(int(nb) - 1, j));
46 hh_t[omp_get_thread_num()][j] += 1;
47 }
48 #pragma omp for // no collapse here to avoid eventual race conditions
49 for (size_t i = 0; i < nb; ++i)
50 for (size_t j = 0; j < omp_get_max_threads(); ++j)
51 hh[i] += hh_t[j][i];
52 }
53 return hh;
54 }
55

Listing 3: Histogram parallel implementation

Finally, listing 3 shows the parallel histogram implementation.
In the serial version only one for loop was used, summing up all the occurrences of a particular

xi at the calculated position j. In the parallel version, the naive approach of putting this in a
parallel for loop, would end up in race conditions.

�erefore, in the shown implementation, two for loops are used.�e �rst one is extended to
sum up in di�erent arrays, one for each thread. In the second one the work from the di�erent
threads is merged into the �nal result, also in a parallel fashion.
For completeness, the make �le (CMake) is shown in listing 4.

1 cmake_minimum_required(VERSION 2.8)
2 set(CMAKE_CXX_FLAGS_RELEASE "-O3")
3

4 project(brownian_motion)
5

6 set(project_sources
7 main.cpp
8 cacheflusher.cpp
9)
10

11 add_executable(${PROJECT_NAME}
12 ${project_sources}
13)
14

15 find_package(OpenMP)
16 target_link_libraries(${PROJECT_NAME} PUBLIC OpenMP::OpenMP_CXX)

Listing 4: Histogram parallel implementation

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-10-21 Page 3 of 7

mailto:fmahlknecht@student.ethz.ch

Exercise Set 2 High Performance Computing I.

1.1 Speedup
Figure 1 presents the obtained results in terms of speedup.

(a) Time stepping

(b) Histogram

Figure 1: Computation speedup evaluated on 100 executions

100 executions have been performed, each of them executing the complete algorithm 24 times,
with the respective amount of threads.�e parameters used were N = 5000000 particles and just
M = 10 iterations.�is increased the necessary time for the histogram generation to 1.2ms to
14.6ms with the respective 24 to 1 core, being more representative than us.�is however, without

Page 4 of 7 2019-10-21 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch

High Performance Computing I. Exercise Set 2

increasing the time stepping computation load to much, by keeping the iterations lower.
However, as �g. 1b shows, the numerical values still present a larger average deviation from

the mean value in the computations for the histograms. Generally, the scaling is not perfect but
rather good.

�e workload in all threads is basically identical, as long as the benchmarked code sections are
considered.�e #pragma omp parallel for divides the particles equally among all threads.
With the initializations being in the same form as the usages, i.e. done from the same threads, also
the caches and memory accesses are optimized (see listing 2).�is allows to obtain the almost
perfect linear scaling. By then doing all the iterations of a single particle in a row, also the cache
misses are reduced. In this way the code gets most likely computationally bound, especially for
largeM, which is why the parallel scaling behaves so well.

1.2 Sensitivity on Parameters
Figure 2 compares the di�erent outcomes of the extreme case of just 1 iterations, 1000 particles
and 1 or 500 threads.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

"hist_0.dat"
"hist_1.dat"

(a) 1 thread

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

"hist_0.dat"
"hist_1.dat"

(b) 1 thread changed seed

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

"hist_0.dat"
"hist_1.dat"

(c) 500 threads

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

"hist_0.dat"
"hist_1.dat"

(d) 500 threads changed seed

Figure 2: Output histogram sensitivity on parameter changes

Note that in all cases, the random number generators are seeded with the thread id involved.
In the ’changed seed’ cases the seed is simply equal to the thread id, whereas the standard cases
involve another random number and some arithmetic operations.
We can observe that the �nal histogramgeneratedwith 500 threads is less uniformly distributed

than it is with just a single thread.�is can be explained by the fact, that a one of the 500 threads
just generates 2 numbers.�erefore the entropy is shi�ed away from the properly implemented

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-10-21 Page 5 of 7

mailto:fmahlknecht@student.ethz.ch

Exercise Set 2 High Performance Computing I.

random number generator into the initial seed implementation.�is of course cannot guarantee
anymore a uniformly distributed output, especially just a�er 1 iteration.
On the other hand, the single threaded implementation can use the same number generator

for all the particles, and meets therefor the requirements of yielding a correctly distributed output.
Changing the way of seeding does not show any signi�cant systematic e�ect.

2 Bug Hunting

1 //assume there are no OpenMP directives inside these two functions
2 void do_work(const �oat a, const �oat sum);
3 doublenew_value(int i);
4

5 void time_loop()
6 {
7 �oat t=0;
8 �oat sum=0;
9

10 #pragma omp parallel
11 {
12 for(int step = 0; step<100; step++) {
13 #pragma omp parallel for nowait
14 for(int i=1; i<n; i++){
15 b[i-1] = (a[i]+a[i-1])/2.;
16 c[i-1] += a[i];
17 }
18

19 #pragma omp for
20 for(int i=0; i<m; i++)
21 z[i] = sqrt(b[i]+c[i]);
22

23 #pragma omp for reduction(+:sum)
24 for(int i=0; i<m; i++)
25 sum=sum+z[i];
26

27 #pragma omp critical
28 {
29 do_work(t,sum);
30 }
31

32 #pragma omp single
33 {
34 t=new_value(step);
35 }
36

37 }
38 }
39 }

Listing 5: Bughunting Exercise 1

For the �rst exercise, given in listing 5, the following bugs can be spotted:

Page 6 of 7 2019-10-21 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch

High Performance Computing I. Exercise Set 2

• Duplicate spawning of threads in line 10 and 13, the second should de�nitely be removed
and turned into a #pragma omp for, i.e. without nowait, since that has no e�ect in this
case

• the reduction for loop can be uni�ed with the for loop before, calculating z[i] and reducing
sum in just one loop.

• m and n are neither declared nor de�ned, but probably we can suppose that this is properly
handled elsewhere.

• this holds for the critical and single section as well

1 void work(int i, int j);
2 void nesting(int n)
3 {
4 int i,j;
5 #pragma omp parallel
6 {
7 #pragma omp for
8 for(i=0; i<n; i++) {
9 #pragma omp parallel
10 {
11 #pragma omp for
12 for(j=0; j<n; j++) {
13 work(i,j);
14 }
15 }
16 }
17 }
18 }

Listing 6: Bughunting Exercise 2

In the second exercise, given in listing 6 the following issues arise:

• Duplicate spawning in line 6 and 10; line 10 an be removed completely.

• A #pragma omp for collapse(2) can be applied in line 8 a�erwards. Of course we
cannot know exactly what work(i,j) does, but guessing from the declaration, this should
be the best performing optimization.

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-10-21 Page 7 of 7

mailto:fmahlknecht@student.ethz.ch

	Brownian Motion
	Speedup
	Sensitivity on Parameters

	Bug Hunting

