
High Performance Computing
for Science and Engineering I.

Exercise Set 1

Florian Mahlknecht

2019-10-11

1 Operational Intensity (Q3)

1.1 Asymptotic bounds for linear algebra operations
Given that the operational itensity I is

I = W
Q

[�op/byte] (1)

we just need to de�ne how many operations and how much data we need for each of the
operations. Note that for each of the following examples the following assumptions are made:

• at the start of the operation the cache is �ushed, meaning that we do not use any data which
was already loaded into cache.

• the �oating point operations (�op) are una�ected from double / single precision meaning
that we do not count them twice in case of double precision

• multiplications and additions are assumed to be both �oating point operations with the
same computational cost

• all other operations, pointer arithmetic and index increments are assumed to be negligible
and not to be performed as �oating point operations (given that they are integers)

1.1.1 DAXPY

y = α x + y x, y ∈ Rn , α ∈ R (2)

�is operation includes n multiplications and n summations, so a total of 2n �ops. �e
memory involved is composed of the two vectors x and y and the real number α, so a total of
(2n + 1) double precision numbers, or 8 (2n + 1) bytes. Note that the resulting y needs also to be
written back to memory, which makes a total of 8 (3n + 1) bytes involved in memory operations

�e resulting operational intensity is therefore simply

I(n) = 2n
8(3n + 1)

; lim
n→∞

I(n) = 1
12

(3)

For this to hold, we need to state the following assumptions:

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-10-11 Page 1 of 9

mailto:fmahlknecht@student.ethz.ch

Exercise Set 1 High Performance Computing I.

• α always remains in cache

• Each element of the vectors x and y is loaded into cache only once. �is means that in case
the data does not �t in cache from start, equally portions are loaded from both vectors and
computations are performed, without having ever to reload portions twice.

1.1.2 SGEMV

In this case, we multiply the vector x by amatrix A.

y = Ax + y x, y ∈ Rn , A ∈ Rn×n (4)

For the matrix times vector multiplication, we have to calculate for each resulting element yi ,
n multiplications (in Einsteins notation Ai jx j) and (n − 1) summations. Finally there is another
summation with the incoming element yi , which brings for all n rows a total number of 2n2

�oating point operations.
From a memory point of view, supposing to hold at least x and y constantly in cache, we have

to load n2+n+n single precision numbers, which take up 4 bytes each. �e resulting vector needs
to be written back, so another 4n bytes. Under the assumption of, again, not loading anything
two times, we get the computational intensity

I(n) = 2n2

4(n2 + 3n)
; lim

n→∞
I(n) = 1

2
(5)

However, from a practical point of view it surely happens with n getting bigger an bigger, the
vector x can be hold in cache during the whole operation, but is needed for every row. So the
vector x might be reloaded q times for every single row. With a limited amount of cache, and
a speci�c maximum partition size p [bytes] which can stay in cache for x, it seems natural to
predict the reloads

q = 4n
p

= c n (6)

where c takes the constant term. In this way the limit, replacing the memory loads considera-
tion for x with c n2, we get

I2(n) =
2n2

4(n2 + c n2 + 2n)
; lim

n→∞
I2(n) =

1
2(1 + c)

(7)

resulting in a more memory bound operation as we could expect.

1.1.3 DGEMM

In this example only matrices are involved:

C = AB + C A, B,C ∈ Rn×n (8)

For the multiplication we need to perform for every resulting element Ci j n multiplications
and (n − 1) summations. Accounting also for the summation with the incoming Ci j this becomes
n2 operations for every element. Given that there are n2 elements, we have a total of n4 �oating
point operations.

Page 2 of 9 2019-10-11 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch

High Performance Computing I. Exercise Set 1

Under the assumption that there is enough cache to hold the three matrices, we can state that
there are 3 loading and 1 writing operation, which sums up to 4n2 DRAM accesses for a double
precision �oating point number, resulting in 32n2 bytes.

I(n) = n4

32 n2 ; lim
n→∞

I(n) = lim
n→∞
O(n2) (9)

So in this case we we have an in�nite operational intensity for in�nite large matrices, growing
in the order of n2. So this problem is clearly computational bound. However, we need to remind
that this is only under the assumption of �tting all matrices in to cache. If we considered also the
necessary reloads, the order would decrease.

1.2 Operational intensity for a code snippet

1 for (int i = 0; i < N; ++i)
2 {
3 double val = C[i] - 5.0;
4 for (int j = 0; j < P ; ++j)
5 val = 0.5 * val + C[i];
6 A[i] = val;
7 }

Listing 1: Code Snippet

Assuming no compiler optimization are applied, we can simply count the �oating point
operations. In line 3, 1 �oating point operation is executed, in line 5, 2 operations are executed.
Considering the loops, we get a total count of N(1 + 2P) operations.

From a memory point of view, we notice that we only access P[i] and A[i] consecutively.
So even if the cache was small, consecutive reads and writes of the vectors P and A would allow
to load / write them only once. �e temporary value val can safely be assumed to stay on the
stack in some register during each loop. So we simply get N reads and N writes, both of double
precision variables1.

Putting all together we have:

I(N , P) = N(1 + 2P)
16N

=
2P + 1
16

(10)

�is means that on the platform with Iripple = 1, for P ≤ 7 the code will be memory bound,
meanwhile P ≥ 8 the procedure results compute bound.

1.3 Operation Intensity of 1D di�usion equation
Starting from the formula we �rst determine the amount of operations. For each element ui we
have 2 summations, one multiplication and another summation, so a total of 4 �oating point
operations, neglecting the fact that we have to compute once the multiplication factor δtα

δx2 . For one
iteration we have therefore 4 N �oating point operations. In M iterations, this scales to 4N M
�ops.

1assumed double precision, given the type choice of the temporary variable val

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-10-11 Page 3 of 9

mailto:fmahlknecht@student.ethz.ch

Exercise Set 1 High Performance Computing I.

For counting the memory operations, we assume that the discretized vector u along x �ts into
the cache. �is makes then 8N bytes of reading operations for double precision numbers. If for
now, we assume to save just the result in the �nal time frame back into RAM, we get:

I(N ,M) =
4N M
16N

=
M
4

(11)

Which of course results in a operational demanding algorithm, scaling just with the numbers
of iterations M. If we wanted to save instead all intermediate steps back to the memory, we get:

I(N ,M) =
4N M
8MN

=
1
2

(12)

which most likely will be memory bounded again.
�e hardware bottleneck would therefore lie more in the memory accesses, if we want to save

intermediate results. However, to optimally use the hardware, this algorithm can be optimized, if
some of the intermediate results can be neglected.

2 Roo�ine Model (Q4)

2.1 Euler II Memory Bandwidth
Euler II uses DDR4 RAM at 2133Mhz. Since it is a double data rate RAM, the actual frequency
is 1066Mhz, but delivering 2 units of data per clock cycle. �e processor supports 4 channels of
memory and the amount of bits in one channel transferred in one cycle is 64. If we multiply those
numbers together and convert to byte we get:

β = 1066Mhz × 2 data units × 4 channels × 64bits × 0.125 = 68.3 GB/s (13)

� q.e .d .

2.2 Hardware Operational Intensity
1. �e hardware is operated in balance for

Ib =
π
β
= [

G�op/s
Gbyte/s

] (14)

for an Euler node this translates to:

Ib =
2 × 480G�op/s
2 × 68.3Gbyte/s

= 7.03
�op
byte

2. �e peak performance for a so�ware with operational intensity I is given by:

Ppeak(I) = min
⎧⎪⎪
⎨
⎪⎪⎩

π
β × I

(15)

where π is the already introduced peak �oating point performance in [�op/s] and β again
the memory bandwidth in [byte/s].

Page 4 of 9 2019-10-11 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch

High Performance Computing I. Exercise Set 1

3. A code will bememory bound if the operational intensity hits the roof on the le� of the ridge
point, i.e. I < Ib. Compute bound code will hit the �at part of the roof, i.e. I > Ib. If this peak
�oating point performance is not reached, there is potential of improving the algorithm by
gaining instruction-level parallelism, e.g. by using single instruction multiple data (SIMD)
instructions, or improving the the instruction mix by ensuring parallel multiplication and
addition operations.

2.3 Euler II Roo�ine

Figure 1 shows a sketch of the roo�ine of a full Euler II Numa Node, as considered before.

10 0 10 1

Operational Intensity (Flop / Byte)

10 11

10 12

P
e
rf

o
rm

a
n
c
e

 (
G

F
lo

p
 /
 s

)

Euler II Numa Node Roofline

960 GFlop / s

136.6 GByte / s

Balanced I
b
 = 7.03

Figure 1: Euler Roo�ine Dra�

2.4 Di�usion Kernel Benchmark

In the following listings the implemented code is presented, see listings 2 to 4.

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-10-11 Page 5 of 9

mailto:fmahlknecht@student.ethz.ch

Exercise Set 1 High Performance Computing I.

6 class DiffusionSolver
7 {
8 public:
9 DiffusionSolver();
10

11 static const int N = 20000;
12 constexpr static const double L = 1000.0;
13 constexpr static const double DX = L/N;
14 constexpr static const double ALPHA = 10e-4;
15 constexpr static const double DT = DX*DX/(4*ALPHA);
16

17 /**
18 * @brief init initializes values to U0
19 */
20 void init();
21

22 void solve(double t_f);
23

24 void printCSVLine();
25

26 private:
27 std::vector<double> m_u;
28

29 void doStep();
30 };

Listing 2: Di�usion Solver Class Declaration

Page 6 of 9 2019-10-11 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch

High Performance Computing I. Exercise Set 1

1 //#define _USE_MATH_DEFINES
2 #include "diffusionsolver.h"
3

4 #include <cmath>
5 #include <iostream>
6

7 DiffusionSolver::DiffusionSolver()
8 : m_u(N)
9 { }
10

11 void DiffusionSolver::init()
12 {
13 for (int i = 0; i < N; ++i) {
14 // do not accumulate summation errors
15 auto x = i*DX;
16 m_u[i] = std::sin(2*M_PI/L*x);
17 }
18 }
19

20 void DiffusionSolver::solve(double t_f)
21 {
22 int nit = std::ceil(t_f/DT);
23

24 for (int n = 0; n < nit; ++n) {
25 doStep();
26 }
27 }
28

29 void DiffusionSolver::doStep()
30 {
31 const double coeff = DT * ALPHA / (DX * DX);
32 double u_old_0 = m_u[0];
33 double u_old_i_prev = m_u[N-1];
34 for (int i = 0; i < N-1; ++i) {
35 double u_new = m_u[i] + coeff * (u_old_i_prev - 2*m_u[i] + m_u[i+1]);
36 u_old_i_prev = m_u[i];
37 m_u[i] = u_new;
38 }
39

40 m_u[N-1] = m_u[N-1] + coeff * (u_old_i_prev - 2*m_u[N-1] + u_old_0);
41 }
42

43 void DiffusionSolver::printCSVLine()
44 {
45 bool first = true;
46 for (const auto& ui : m_u) {
47 if (!first) std::cout << ";";
48 std::cout << ui;
49 first = false;
50 }
51 std::cout << std::endl;
52 }

Listing 3: Di�usion Solver Class De�nition

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-10-11 Page 7 of 9

mailto:fmahlknecht@student.ethz.ch

Exercise Set 1 High Performance Computing I.

7 #include "cacheflusher.h"
8 #include "diffusionsolver.h"
9

10 using hrc = std::chrono::high_resolution_clock;
11

12 int main()
13 {
14 CacheFlusher cf;
15 DiffusionSolver solver;
16

17 const int N = 10;
18 std::vector<double> msrmt;
19 msrmt.reserve(N);
20

21 for (int i = 0; i < N; ++i) {
22 // initialize to u_0
23 solver.init();
24

25 cf.flush();
26 auto start = hrc::now();
27 solver.solve(5000.0);
28 auto end = hrc::now();
29

30 std::chrono::duration<double> duration = end-start;
31 msrmt.push_back(duration.count());
32

33 if (i > 0)
34 std::cout << "; ";
35 std::cout << duration.count();
36 }
37

38 std::cout << std::endl;
39

40 auto mean = std::accumulate(msrmt.begin(), msrmt.end(), 0.0)/msrmt.size();
41

42 std::cout << "Mean computing time; " << mean << std::endl;
43

44 return 0;
45 }

Listing 4: Main

To validate the implementation the possible CSV output function was used to perform a
qualitative analysis. For practical reasons faster converging solution parameters (higher α) have
been used and plotted, see �g. 2. As expected, the initial sin wave smooths out a�er some time.

On the Euler cluster, the following parameters have been used:

N = 20000

L = 1000

DX = 0.05

ALPHA = 0.001

DT = 0.625

It has been iterated up to 5000 s, resulting in 8000 iterations. �e job was executed on
eu-c7-077-05. �e following output has been obtained:

Page 8 of 9 2019-10-11 Florian Mahlknecht
fmahlknecht@student.ethz.ch

19-945-351

mailto:fmahlknecht@student.ethz.ch

High Performance Computing I. Exercise Set 1

Figure 2: Di�usion

2.28624 2.17239 2.17716 2.1751 2.17003 2.17252 2.17296 2.18244 2.17323 2.17836
Mean computing time: 2.186043

Table 1: Result from job execution on Euler

It is noticeable from table 1, that the �rst value is 100ms higher than all the others. Most likely
the �ush cache routine has been optimized out by the compiler. �e other values are all around
2.175 s.

If we consider now our predictions we estimated 4N M �oating point operations, where M is
the number of iterations. Putting in the numbers in, they summed up they should be 640MFlop,
which divided by the average time (neglecting the �rst one) results in e�ectively 294MFlop/s.
Given that our implementation was just single-threaded and did just use one of the 24 (2 × 12)
cores, experienced performance was much worse.

3 Amdahl’s law (Q5)

For number of processors N ≥ 2 the speedup can be expressed as:

speedup(N) =
t

0.01t + 0.04 t
2 + 0.95

t
N
=

1
0.03 + 0.95

N
(16)

�e maximum speedup without limitations on the numbers of processors is:

lim
N→∞

speedup(N) =
1

0.03
≈ 33 (17)

To obtain a speedup of at least 8, we need:

8 =
1

0.03 + 0.95
N

⇒ N =
0.95
0.76

8 = 10 (18)

at least 10 processors.

Florian Mahlknecht
fmahlknecht@student.ethz.ch
19-945-351

2019-10-11 Page 9 of 9

mailto:fmahlknecht@student.ethz.ch

	Operational Intensity (Q3)
	Asymptotic bounds for linear algebra operations
	DAXPY
	SGEMV
	DGEMM

	Operational intensity for a code snippet
	Operation Intensity of 1D diffusion equation

	Roofline Model (Q4)
	Euler II Memory Bandwidth
	Hardware Operational Intensity
	Euler II Roofline
	Diffusion Kernel Benchmark

	Amdahl’s law (Q5)

