
Alma Mater Studiorum ⋅ Università di Bologna
Scuola di Ingegneria e Architettura

Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione
“Guglielmo Marconi” – DEI

Corso di Laurea in Ingegneria dell’Automazione

Implementation of an Autonomous Navigation
Algorithm with Collision Avoidance
for an Unmanned Aerial Vehicle

Tesi di Laurea
in

Controlli Automatici

Relatore:
Chiar.mo Prof. Lorenzo Marconi

Correlatore:
Prof. Nicola Mimmo

Presentata da:
Florian Mahlknecht

II Sessione
Anno Accademico 2017/2018

Abstract

In the last few years an increasing demand in multicopter vehicle applications is taking place.
Almost all of them involve autonomous trajectory following and collision avoidance as a security
measure. Although commonly used flight controller so ware foresees sophisticated solutions
to those problems, advanced implementations are still rare. ¿is thesis elaborates those issues
in a specific use case regarding a coverage flight for agricultural purposes. ¿e currently used
technologies are exploited to implement tracking of a general trajectory defined up to the 1st order
derivative as well as a rudimentary collision avoidance approach, applied to the inner multicopter
control loops. ¿e higher level control is performed by an on-board companion computer and
implemented in Robot Operating System (ROS), which opens up the possibility of modular
extensions. ¿e collision avoidance in contrast, is implemented directly in the Flight Control
Unit (FCU) firmware to provide fast reactive evasion maneuvers. ¿e achieved performances are
evaluated and compared with simulation results.

Keywords: Coverage Trajectory Following, Collision Avoidance, Unmanned Air Vehicles
(UAV), Autopilot, Quadrotors, UAV Position Control

iii

Abstract (italiano)

Negli ultimi anni si sta verificando una crescente domanda nelle applicazioni per gli aeromobili
a pilotaggio remoto, comunemente noti come droni. Quasi tutte le applicazioni prevedono la
navigazione autonoma su una traiettoria prestabilita e un sistema per evitare collisioni in volo
come misura di sicurezza. Sebbene i so ware di controllo di volo attuali prevedano soluzioni
sofisticate a tali problemi, le implementazioni avanzate sono ancora rare. Questa tesi elabora
tali questioni in un caso d’uso specifico riguardante un volo di copertura per scopi agricoli.
Le tecnologie attualmente utilizzate vengono sfruttate per implementare il tracciamento di una
traiettoria generale definita fino alla derivata prima e un approccio rudimentale per l’esclusione
delle collisioni, applicato agli anelli di controllo interni. Il controllo di alto livello viene eseguito
da un computer di bordo, usando il Robot Operating System (ROS) per un’eventuale estensione
modulare. Al contrario, il sistema per evitare ostacoli in volo, viene implementato direttamente nel
firmware della Flight Control Unit (FCU) per fornire manovre di evasione più reattive possibile.
Le prestazioni raggiunte vengono valutate e confrontate tramite i dati della simulazione.

Keywords: Tracciamento traiettoria di copertura, evitare collisioni, aeromobile a pilotaggio
remoto (APR), autopilota, quadrirotore, APR controllato in posizione

v

Acronyms

CC Companion Computer. vii, 6–8, 10, 19, 22, 49, 51, Glossary: Companion Computer

CCW Counter Clockwise. 13

CNC Computer Numerical Control. 53

CPU Central Processing Unit. 67

CW Clockwise. 13

EMI Electromagnetic Interference. 57

ENU East North Up. 11, 12, 23, 29

FCU Flight Control Unit. iii, v, vii, 5–8, 10, 19, 29, 41, 49, 67, Glossary: Flight Control Unit

FSM Finite State Machine. 18, 19, 49

GPS Global Positioning System. 1, 10, 14, 68

I/O Input / Output. 68, Glossary: I/O port

IMU Inertial Measurement Unit. 1

LIDAR Light Detection and Ranging. 38, 41, 51

LP Low Pass. 42, 47, 48

MAVLINK Micro Air Vehicle Communication Protocol. 8, 10, 19, 30, 41, 42

MAVROS ROS interface for MAVLINK. 8, 10, 19, 20, 30, 41, 57

MGRS Military Grid Reference System. 14

NED North East Down. 11–13, 22, 38, 42

PC Personal Computer. 2

ROS Robot Operating System. iii, v, vii, 6–8, 10, 15, 16, 19–21, 23, 30, 42, Glossary: Robot
Operating System

RPY Roll Pitch Yaw. 13, 45, 48

vii

Acronyms Acronyms

RTL Return To Land. 57

SITL So ware In¿e Loop. 29

UART Universal Asynchronous Receiver-Transmitter. viii, 9, 10, Glossary: Universal Asyn-
chronous Receiver-Transmitter

UAV Unmanned Arial Vehicle. 1, 2, 4–8, 11, 16, 48, 59, 67

UDP User Datagram Protocol. 30

UTM Universal Transverse Mercator. viii, 13, 14, 23, Glossary: Universal Transverse Mercator

WGS World Geodetic System. viii, 10, 13, 17, 19, 23, Glossary:World Geodetic System

XML Extensible Markup Language. 9

viii

Contents

Abstract iii

Abstract (italiano) v

Acronyms vii

Contents ix

I Introduction 1
1 Motivation . 1

1.1 Trajectory Following . 1
1.2 Collision Avoidance . 2
1.3 ¿e Bambi Project . 2

1.3.1 Importance in Agriculture . 3
1.4 General UAV usage for Wildlife Tracking 4
1.5 Summary . 4

2 State of the art . 4
2.1 Trajectory Following . 4

2.1.1 Waypoint Navigation . 5
2.2 Collision Avoidance . 5
2.3 Related Publications . 5

3 Innovation . 6
4 ¿esis Outline . 6

II UAV Position Control 7
1 System Architecture . 7

1.1 PX4 . 8
1.1.1 Flight Modes Overview . 8
1.1.2 MAVLINK . 8
1.1.3 Interfacing Options . 9

1.2 MAVROS . 10
2 Problem Description . 10

2.1 Mathematical Definition of the Control Problem 10
3 Coordinate Frames . 11

3.1 Local Reference Frames . 11
3.1.1 NED Frame . 12
3.1.2 ENU Frame . 12
3.1.3 RPY Angles . 13

ix

3.2 Global Reference Frames . 13
3.2.1 WGS 84 . 13
3.2.2 UTM . 14

4 ROS Node Architecture . 15
4.1 Problem Division . 16
4.2 Relevant messages definitions . 16
4.3 Mission Controller . 18
4.4 Flight Controller . 19

4.4.1 Implementation . 20
4.4.2 Relative Altitude Handling . 22

4.5 Trajectory Generator . 23
5 Constant velocity trajectory . 24
6 Velocity Feed Forward Control . 27

6.1 Implementation . 28
7 Simulation Results . 29

7.1 SITL Environment . 29
7.1.1 Gazebo . 30
7.1.2 Simulated 3DWorld . 31

7.2 Tracking Performance Evaluation . 31

III Collision Avoidance 37
1 Use Case Analysis . 37
2 Control Signal Application . 37
3 Distance Sensing . 38

3.1 Available Hardware . 38
4 Collision Avoidance¿rust Definition . 38

4.1 ¿rust Magnitude . 39
5 Implementation . 40

5.1 MAVLINKMessage . 41
5.1.1 Gazebo Laser Scan . 41

5.2 PX4 Firmware Modification . 42
5.2.1 ¿rust Application . 44
5.2.2 Logging . 44

6 Simulation Results . 44
6.1 Qualitative Evaluation . 48

6.1.1 Advantages and Disadvantages 48
6.2 Comparison with other methods . 49

IV Experimental Results 51
1 Reference Implementation . 51

1.1 Drone Frame . 51
1.2 Mounted Equipment . 55

2 Bambi Project Work . 55
3 Field Experiments . 56
4 Lessons learned . 57

x

V Conclusion and Future Work 59
1 Future Work . 59

1.1 Trajectory Tracking . 59
1.2 Collision Avoidance . 59

A References 61

B Supplementary Information 65
1 List of Figures . 65
2 List of Tables . 66
3 List of Listings . 66
4 List of Algorithms . 66

C Glossary 67

xi

Chapter I

Introduction

Unmanned Arial Vehicles (UAVs), colloquially also known as drones, are drawing a lot of
interest in the recent years. Advancements and price drops in sensor technology and micro-

controllers, especially the packaging into an Inertial Measurement Unit (IMU) of gyroscopes and
accelerometers, together with the availability of Global Positioning System (GPS), allow to build a
relatively low-costmobile robot with considerably good precision for outdoor flight tasks. ¿ese
developments opened up many new use cases, providing attractive approaches in various fields,
e.g. logistics.

Generally, there are still many improvements needed to realize robust, safe and truly au-
tonomous drones. ¿is written work elaborates the implementation with currentlymost common
drone technologies of a path following navigation algorithm with collision avoidance. In particular,
the focus is on automatic trajectory generation for a given path, guaranteeing constraints on inter-
nal state variables, such as velocity or acceleration. ¿e collision avoidance is then performed in a
reactive manner, without any need for modifying or updating the previously generated trajectory.

¿is thesis is part of the outcome of a group project code-named bambi, whose main objective
is to automate an existing quad-copter mission for agriculture purposes. In essence, the flight
task consists in scanning an agricultural field with an infrared sensor to detect the body heat of
animals, in order to save them from danger of death through mowing machines.

1 Motivation
Just as the Bambi Project, almost all UAV flight applications entail the necessity to implement the
following two features:

1. Automated trajectory following

2. Collision avoidance

1.1 Trajectory Following
Following a trajectory is one of the most basic tasks an UAV has to accomplish. Many papers have
been released covering the topics position control and waypoint navigation, e.g. [1] or [2], which
together constitute the currently used solution to realize autonomous drone flights.

Waypoint navigation basically consists in reaching a list of defined global waypoints, i.e. GPS
coordinates, by using a straight line as interconnection. It is used in countless applications such
as surveillance or aerial imaging.

1

1. MOTIVATION CHAPTER I. INTRODUCTION

¿e so-called flight missions are generated by end-user so ware running on mobile devices or
personal computers (PCs), fig. 1.1 shows two examples. Already the quantity of mission planner
applications available in the common online stores shows the elevated use of trajectory following
tasks.

(a) Drone Deploy Aerial Mapping So ware
(b) QGroundControl1

Figure 1.1: Waypoint Generation So ware

However, from a control point of view, those solutions give very limited freedom in the
trajectory design, i.e. the waypoints are reached using straight lines (as it can be seen in fig. 1.1)
and usually a constant velocity control signal of around 5m/s.

1.2 Collision Avoidance
Collision avoidance2 is another important research focus in the field of UAVs, since it represents
the main security aspect. Usually, such systems try to keep a minimum distance in flight from any
kind of obstacles. Especially in urban environments, the presence of trees, houses, light poles, etc.
constitutes a huge problem in the safe execution of flight tasks. Not only are eventual crashes a
huge risk of damage for the (o en expensive) on-board electronic equipment, but they constitute
also serious safety concerns for people nearby.

1.3 ¿e Bambi Project
¿e Bambi Project aims to robotize a coverage flight task on agriculture fields for saving wildlife,
currently carried out by hand.

¿e mission is so far guided by a pilot and at least one assistant, which saves eventually found
animals in the field. ¿rough an analog video transmitter, the signal of the thermal camera is
brought to the ground and continuously checked for anomalies by the pilot. If zones at higher
temperature are found, the drone hovers3 over the potential animal, until it is found and saved by
the ground crew.

Various organizations and projects have been realized to promote the usage of UAVs to save
mainly fawns, e.g.:4

• In Switzerland: www.rehkitzrettung.ch
1Taken from https://docs.px4.io/en/flying/missions.html, accessed on 2018-09-18
2Also known as obstacle avoidance
3i.e. stays in the same position in the air
4Links have been accessed on 2018-09-19

2

www.rehkitzrettung.ch
https://docs.px4.io/en/flying/missions.html

CHAPTER I. INTRODUCTION 1. MOTIVATION

• In Germany: www.wildretter.de5, rehkitzrettung-reichelsheim.de and
rehkitzrettung-gera.de

Some of them provide even online reservation and registration for new fields.

1.3.1 Importance in Agriculture

In grassland areas, especially those surrounded by forests, it is a common problem, that wild
animals hide in cultivated fields. ¿e work with mowing machines then involuntary leads to
thousands of fatalities. ¿e international council for game and wildlife conservation, published a
mowing guide for agriculture fields, in which an estimate of the yearly losses can be found:

“In Germany alone, the volume of wildlife losses resulting from grassland management
amounts at a conservative estimate to 500,000 individuals, of which approximately 90,000 are
fawns.” [3, p. 4]

It is therefore a significant issue, which draws the attention mainly from two parties:

the farmers are interested in avoiding brutal interruptions and keeping their harvest clean

the rangers are interested in preserving the population of wild animals

Figure 1.2: Saved fawn6

Figure 1.2 shows a saved fawn. ¿e crucial aspect is that they hide in a very e�cient way. In
higher grass it is impossible to spot them even from just a few meters of distance.

¿e most common method to overcome the problem is the use of infrared sensors:

Juveniles in the meadows can be tracked down by means of so-called “wildlife de-
tectors" and moved to safety. ¿ere are several prototypes on the market, most of
which function on the principle of infrared sensors which detect the body heat of the
animals. [...] However, the limitations of this technique are quickly reached: in order
to track down the animals, a certain temperature di�erence between the animal body
temperature and the environment temperature is required [...] [3, p. 10]

5EU research project
6Gently provided by ‘‘Verein Rehkitzrettung Schweiz/Rehkitzrettung.ch’’

3

www.wildretter.de
rehkitzrettung-reichelsheim.de
rehkitzrettung-gera.de

2. STATE OF THE ART CHAPTER I. INTRODUCTION

¿e former issue regarding the need of a significant temperature di�erence is the reason why
coverage flights are usually carried out in the morning, from 5am to 7am.

Figure 1.3: ¿ermal capture of fawn

Figure 1.3 shows the record of a thermal camera. Modern equipment allows the detection
from a flight altitude of more than 50m7.

1.4 General UAV usage for Wildlife Tracking
¿e usage of UAVs has been considered more generally for tracking down animals. For several
years already research works are published, using drones for various surveillance tasks in the field
of biology, see [4].

In the Journal of Ecology and Environment in 2017 e.g., Han proposed the usage of UAVs to
monitor waterbirds, see [5]. In [6] monitoring cattle has been evaluated. [7] documents the usage
of a custom-build drone for whale surveillance.

1.5 Summary
¿euse cases shown, contain all together the need for trajectory following and – as a safety measure
– collision avoidance. Contenting the demand for improvements in this research fields is therefore
crucial to further enhance the advantages of UAVs.

2 State of the art
¿e currently deployed solutions shall briefly be inspected and analyzed.

2.1 Trajectory Following
As discussed for fig. 1.1 on page 2, it is of common practice to define waypoints on special so ware
for later mission execution on UAVs. ¿e workflow is thereby:

7See https://www.rehkitzrettung.ch/infos/infos-ueber-bfh-hafl-methode, accessed
on 2018-09-20

4

https://www.rehkitzrettung.ch/infos/infos-ueber-bfh-hafl-methode

CHAPTER I. INTRODUCTION 2. STATE OF THE ART

1. Use mission planning so ware to get a list of waypoints

2. Upload themission to the Flight Control Unit (FCU)

3. Start the execution on the vehicle using a waypoint navigation autopilot

Typically, a few tens of waypoints are defined, whichmakes the trajectory quite sharp-cornered
and harsh.

2.1.1 Waypoint Navigation

Once the mission is uploaded to the FCU, special flight modes8 trigger the waypoint nav-
igation. ¿e vehicle will follow a straight line between waypoints at a constant velocity.
PX4, one of the most used flight controller so wares e.g., implements this behavior in
the FlightTaskAutoLine C++ class: https://github.com/PX4/Firmware/blob/
370fddc1158fde39b14467ec7ed098376c76632e/src/lib/FlightTasks/
tasks/AutoLine/FlightTaskAutoLine.hpp#L37-L38.

2.2 Collision Avoidance
¿ere is a huge research e�ort to improve collision avoidance approaches. ¿e problem is discussed
not only in the research area of UAVs, but also in the promising sector of self-driving cars.

¿e major challenge is to detect the presence of obstacles. ¿e most common approach is
to use a 2D laserscan for measuring the distance from any eventual obstacle located in a plane
of reference around the vehicle, as discussed e.g. in [8]. Modern approaches include computer
vision, o en in combination with convolutional neural networks trying to enhance the quality of
the information on obstacles, see e.g. [9].

¿e reaction to obstacles, then, depends on the way path planning is handled. Usually, ap-
proaches are distinguished between online and o�ine path generation. In online path generation,
the planned trajectory is generated in-flight, i.e. updated as obstacles are detected. ¿e model
typically implies to have a navigation goal for the mobile robot. In the o�ine path generation
method by contrast, the trajectory is computed once, usually even before the flight.

¿e most common and, at the same time, one of first ideas is the potential field approach.
Basically, every obstacle is modeled as a pole in a repulsive potential field, while the navigation
goal is represented in a attractive potential field. ¿e gradients of those potentials are then used
as a reference acceleration for the UAV.

Collision avoidance and path planning are o en treated together. Despite of the research
e�ort, a simple and e�ective solution, to be used as a security measure is therefore still missing.

2.3 Related Publications
Besides the already mentioned papers, many other related publications are available. Regarding
trajectory following, an approach for smooth trajectory generation using Bezier curves, meeting
dynamic constraints, is discussed in [10]. Minimum snap trajectories for UAVs are treated in [11].

A good introduction into obstacle avoidance can be found in [12]. A real time implementation
is discussed e.g. in [13].

8In the flight controller so ware PX4 e.g., the mode AUTO

5

https://github.com/PX4/Firmware/blob/370fddc1158fde39b14467ec7ed098376c76632e/src/lib/FlightTasks/tasks/AutoLine/FlightTaskAutoLine.hpp#L37-L38
https://github.com/PX4/Firmware/blob/370fddc1158fde39b14467ec7ed098376c76632e/src/lib/FlightTasks/tasks/AutoLine/FlightTaskAutoLine.hpp#L37-L38
https://github.com/PX4/Firmware/blob/370fddc1158fde39b14467ec7ed098376c76632e/src/lib/FlightTasks/tasks/AutoLine/FlightTaskAutoLine.hpp#L37-L38

3. INNOVATION CHAPTER I. INTRODUCTION

In addition to the publications regarding UAV applications for biological surveys, a similar
use case has been analyzed in [14]. It treats the tracking of humans through the usage of thermal
cameras mounted on UAVs.

3 Innovation
In this thesis, an implementation using broadly adopted platforms such as PX4 and Robot Op-
erating System (ROS) is presented. A Companion Computer (CC) is used to provide setpoint
updates to the FCU. ¿is brings the advantage of using the flexible ROS environment as the main
programming platform.

Regarding trajectory generation, the implemented setpoint updates from the CC provide
more flexibility in the trajectory design. It enables to use control techniques such as velocity feed-
forwarding on those mobile robot platforms. A simple constant velocity trajectory generation is
provided. Unlike waypoint navigation systems, the presented implementation allows to freely use
any trajectory defined up to the 1st order derivative, which yields a better tracking performance.

For the collision avoidance system a simple approachwith a 2D laserscan is used. ¿e proposed
application of the obstacle avoidance signal directly in the acceleration control loop yields a high
agility in the reactive maneuvers with shorter delays. With respect to similar systems, it has the
advantage of getting along without online path updates. It works in any flight mode as a security
measure. Common disadvantages of 2D obstacle detection systems are ,however, not addressed.

4 ¿esis Outline
In chapter II, the problem of controlling the UAV to follow a predefined path is discussed and a
simple solution, i.e. a constant velocity trajectory is provided and its performance evaluated.

Chapter III on page 37 discusses the implementation of an appropriate collision avoidance
approach and presents the simulation results.

Chapter IV on page 51 is dedicated to the presentation of the project work and provides the
outcomes of some field experiments.

Finally, chapter V on page 59 comments the accomplished work and gives an outlook on
possible future improvements and developments.

6

Chapter II

UAV Position Control

In this chapter the problem of controlling the UAV’s position is addressed in detail. Currently
available technologies are exploited and their performance is evaluated, using a simple solution to
the trajectory generation problem.

1 System Architecture
Figure 2.1 shows the main system components. ¿e most important ones are two:

Flight Control Unit (FCU) To handle the low-level control, the widely spread flight controller
Pixhawk is used, flashed with the most recent PX4 flight-stack.

On-board Companion Computer (CC) ¿e high-level control is performed by the Raspberry
Pi 3 as an on-board computer, using ROS1 as an implementation framework.

Figure 2.1: Basic System Architecture

1See [15] or, for a brief introduction, [16]

7

1. SYSTEM ARCHITECTURE CHAPTER II. UAV POSITION CONTROL

As fig. 2.1 on page 7 illustrates, all the major implementation work can be conveniently carried
out, using ROS on the Raspberry Pi. ¿e crucial ROS Node, which allows the communication
with the PX4 flight-stack, is a ROS interface for MAVLINK (MAVROS), and available as part of
the so ware collection around PX4.

1.1 PX4
PX4 is an open-source autopilot system designed for low-cost UAVs. Started as a student project
at the Computer Vision and Geometry Lab at ETH Zürich2 in 2009, it presents nowadays the
de-facto standard in the drone industry. Besides the so ware, the project provides open hardware
designs which several vendors are currently producing. Documentation and general information
on the project can be found under px4.io3.

¿e following main advantages made up the design choice of using PX4:

Simulation As a open source project, it supports many simulation choices in order to be able to
test new code prior to an application on the real vehicle. Given the complexity of the system,
without a simulation option it would be practically impossible to develop new features.

OFFBOARDmode ¿e autopilot so ware provides the so-called OFFBOARD mode, which
enables full control of the vehicle by the CC.

Velocity feed-forward In the OFFBOARD mode, a feed-forward control path is enabled, which
potentially allows a better control with respect to other available autopilots.

1.1.1 Flight Modes Overview

¿e currently implemented flight modes for multicopters in PX4 are4:

• Position

• Altitude

• Stabilized

• Rattitude

• Acro

• Takeo�

• Land

• Hold

• Return

• Mission

• Follow Me

• O�board

Relevant for autonomous copter missions are the former 7, especially the OFFBOARD mode.
In the former the Micro Air Vehicle Communication Protocol (MAVLINK) is used to receive
setpoint updates from a CC, which enable full control of the vehicle’s position, up to the 1st order
derivative.

1.1.2 MAVLINK

MAVLINK is a parallel outcome of the PX4 project used for communication between the FCU
and the ground station or the CC. It is designed as amarshalling library, i.e. serializing the defined
messages for transmission.

Every message is in the following byte format, listed in table 2.1 on the facing page:

2ETH Zürich (Swiss Federal Institute of Technology)
3Accessed on 2018-09-20
4Compare with https://docs.px4.io/en/flight_modes/, accessed on 2018-09-20

8

px4.io
https://docs.px4.io/en/flight_modes/

CHAPTER II. UAV POSITION CONTROL 1. SYSTEM ARCHITECTURE

Field name Index (Bytes) Purpose

Start-of-frame 0 Denotes the start of frame transmission (0xFE)

Payload-length 1 Length of payload (n)

Packet sequence 2 Sending sequence (allows detection of packet losses)

System ID 3 Identification of the SENDING system

Component ID 4 Identification of the SENDING component

Message ID 5 Identification of the message
(defines what the payload ‘‘means’’)

Payload 6 to (n+6) ¿e message data

CRC (n+7) to (n+8) Check-sum of the entire packet

Table 2.1: General MAVLINKMessage Format

¿e di�erent message types are then defined in Extensible Markup Language (XML) files,
available at https://mavlink.io/en/messages/common.html5.

1.1.3 Interfacing Options

¿e used platform is the first version of the Pixhawk series, shown in fig. 2.2. Details can be found
under https://docs.px4.io/en/flight_controller/pixhawk.html5.

Figure 2.2: Pixhawk

¿e most relevant interfaces are:

I2C through an I2C splitter, the ground lidar and the external compass are connected

GPS through a dedicated Universal Asynchronous Receiver-Transmitter (UART) port

5Accessed on 2018-09-21

9

https://mavlink.io/en/messages/common.html
https://docs.px4.io/en/flight_controller/pixhawk.html

2. PROBLEM DESCRIPTION CHAPTER II. UAV POSITION CONTROL

Serial connection to the Raspberry Pi (used as CC) through an UART port

¿e serial connection to the Raspberry Pi was set-up for the OFFBOARD mode, configuring
a few routing settings on the Pixhawk and the installation of MAVROS on the Raspberry Pi.

1.2 MAVROS
As already mentioned, a translation layer between MAVLINK and ROS is needed6, in order to
allow ROS programming on the Raspberry Pi. MAVROS has been designed to satisfy those exact
needs.

¿eROSnode /mavros contains all publishers / subscribers for interacting throughMAVLINK
with the FCU. ¿e most important topics for controlling the vehicle in OFFBOARD mode are:

• /mavros/setpoint_raw/local which transmits the setpoint to the vehicle’s controller,
referred to the local system of reference.

• /mavros/set_mode ROS service to change the flight mode.

2 Problem Description
¿e robotized flight mission implemented in the Bambi Project7 includes various stages, inter
alia, the execution of the coverage flight. It basically consists in following a geometric path, i.e. a list
of World Geodetic System (WGS) 84 coordinates.8

¿e central problem is therefore to continuously provide the PX4 flight controller with setpoint
updates that guarantee the trailing of the given path.

2.1 Mathematical Definition of the Control Problem
Assuming for now to have an inertial Euclidean reference frame, the path may be defined as a
finite sequence:

⟨pk⟩k≤n = ⟨p1, p2, ..., pn⟩
with pk ∈ R3 (2.1)

¿e problem is to obtain the control setpoint r∗(t), i.e. the time dependent trajectory, to be
used as an input for the PX4 FCU.

r∗(t) ∶ [0, tn]→ R3

t ↦ (x∗(t), y∗(t), z∗(t)) (2.2)

Where tn ∈ R+ is the time in seconds needed for getting to the last point pn = r∗(tn). ¿e
function r∗(t), which needs to be found, must satisfy the following condition:

6See fig. 2.1 on page 7
7see section 1.3 on page 2
8For GPS navigation see e.g. [17], the reference systems are discussed in section 3 on the facing page

10

CHAPTER II. UAV POSITION CONTROL 3. COORDINATE FRAMES

∃ ⟨t j⟩ j≤n ∈ R+ ∣ ∀ i ≤ j ≤ n ti ≤ t j
∧ r∗(t j) = p j (2.3)

In other words, it must be possible to identify time instances in which the trajectory passes
through the given points. Mathematically, this is accomplished with the existence of the finite
real increasing monotonic sequence ⟨t j⟩ j≤n. Note that t1 = 0 in order to constrain the trajectory to
start from p1.

¿e time dependent trajectory r∗(t) which needs to be generated has to obey some dynamical
constraints, like velocity limits:

∥ṙ∗(t)∥ ≤ vmax ∀ t ∈ [0, tn] (2.4)
∥r̈∗(t)∥ ≤ amax ∀ t ∈ [0, tn] (2.5)

It is worth to emphasize that the actual implementation does not ask for a time-continuous
function, but a discrete sequence of setpoints, equidistant in time of a certain period 1

fs p where
fsp ∈ R+ is the setpoint rate in [Hz]. In this way the control signal can equally be defined as:

⟨r∗k⟩k<=m = ⟨r∗1, r∗2, ..., r∗m⟩

with r∗k = r∗(k
fsp

) (2.6)

Which implies that t f = m
fs p → m = fsp t f , i.e. the higher the rate, the more setpoints are

needed (considering the same trajectory).

3 Coordinate Frames

For a meaningful discussion, common reference systems are needed. ¿ere are many di�erent
conventions for coordinate frames, the most important ones shall be discussed briefly.

3.1 Local Reference Frames

For controlling the UAV two main representations are used:

• East North Up (ENU)

• North East Down (NED)

¿ese are right-handed local reference frames, i.e. the origin is set in a determined position.

11

3. COORDINATE FRAMES CHAPTER II. UAV POSITION CONTROL

3.1.1 NED Frame

As shown in fig. 2.3, the NED convention is applied to an external reference frame as well as to
the body reference frame. ¿e external reference frame lets the xE-axis point to global north, the
yE-axis point to global east and the z axis pointing down, to complete the right-handed reference
system.

Figure 2.3: NED Frame

¿e body reference frame is made-up in the same manner, with the nose pointing in xB
direction.

3.1.2 ENU Frame

In an analogous way, the ENU convention, given in fig. 2.4, lets the xE-axis point to global east,
the yE-axis point to global north and the z axis pointing up.

Figure 2.4: ENU Frame

12

CHAPTER II. UAV POSITION CONTROL 3. COORDINATE FRAMES

¿e body reference frame lets the nose point again in xB direction, but with zB pointing
downwards instead.

3.1.3 RPY Angles

It is worth to point out that the body systems presented in sections 3.1.1 and 3.1.2 are not coherent
with the general adapted Roll Pitch Yaw (RPY) orientation angles used in robotics. ¿e former
can be defined as:

Roll ϕ counter-clockwise (ccw)9 around the z axis, which is the approach direction

Pitch θ ccw around the y axis, which is the sliding direction

Yaw ψ ccw around the x axis which is the normal direction

Since in the NED frame e.g., the nose points in the xB direction, instead of pointing in the
approach direction z, the RPY angles the NED reference system will not yield the expected results.

Furthermore, the YAW angle in PX4 will generally be measured considering it with respect to
global north in the NED frame, which, seen from above means in the clockwise (cw) direction,
since the zB axis points downwards.

3.2 Global Reference Frames

Globally there are two important standards:

• World Geodetic System (WGS)

• Universal Transverse Mercator (UTM)

Meanwhile WGS maps global locations using an reference ellipsoid in a 3-dimensional polar
reference frame, UTM provides a set of local, metric, 2-dimensional Cartesian reference frames.

3.2.1 WGS 84

As fig. 2.5 on the next page shows, WGS uses the commonly known coordinate mapping involving
longitude λ and latitude ϕ.

9ccw is the counter-clockwise direction considering the top view from the axis onto the other two 90° distant axis

13

3. COORDINATE FRAMES CHAPTER II. UAV POSITION CONTROL

Figure 2.5: World Geodetic System

¿e geoid10 is approximated by a reference ellipsoid. ¿e last version from 1984, which is
nowadays used also in GPS, has inter alia the following parameters (used in fig. 2.5):

• a ≈ 6378.137 km

• b ≈ 6356.314 km

It is worth to emphasize that the distinction from a proper sphere is rather small, given the
small di�erence in distance between the two main axis of around 20 km, which is less than 1%.
As fig. 2.5 illustrates, all the coordinate pairs of (λ, ϕ) need a common reference which is given
by the prime meridian and the equator.

3.2.2 UTM

¿e UTM system provides a set of 2-dimensional Cartesian coordinate frames. Referring to
any possible reference ellipsoid, the Earth is segmented into 60 zones, each being a 6° band
of longitude. In each zone a secant transverse Mercator projection is applied. For details and
formulas see e.g. [18].

Although, strictly speaking latitude bands are not part of UTM, but rather defined in the
Military Grid Reference System (MGRS), they are commonly used. Each UTM (longitude) zone
is divided into 20 latitude bands. Each latitude band is 8° high, and is identified by letters starting
from ‘‘C’’ at 80°S, following the alphabet until ‘‘X’’, without the letters ‘‘I’’ and ‘‘O’’, because of
their similarity to 1 and 0 respectively.

¿e UTM tiles over Europe are illustrated in fig. 2.6 on the facing page.

10the shape of earth’s water surface under the influence of gravity and rotation alone, i.e. no wind e�ects etc.

14

CHAPTER II. UAV POSITION CONTROL 4. ROS NODE ARCHITECTURE

Figure 2.6: UTM Grid

4 ROS Node Architecture
¿e Bambi Project uses various ROS nodes that implement di�erent tasks, which need to be
accomplished during the flight mission. For a better illustration however, only the relevant nodes
involved in trajectory following and the most important related topics are shown in fig. 2.7.

/bambi/mission_controller

/bambi/trajectory_generator

/mavros

/bambi/�ight_controller/mavros/setpoint_raw/local

/mavros/bambi/missiontrigger

/bambi/�ight_controller_reached_home

/bambi/mission_controller/coverage_�ight_trigger

/bambi/mission_controller/trigger_trajectory_generation

/bambi/trajectory_generator/trajectory

Figure 2.7: ROS-Graph of trajectory-following related ROS nodes

¿e mission controller node handles the whole mission procedure. In particular, for the
coverage flight it relies on other two nodes:

Trajectory generator Generates a list of setpoints, for a certain update rate which follow the
trajectory

15

4. ROS NODE ARCHITECTURE CHAPTER II. UAV POSITION CONTROL

Flight controller Handles the communication with the flighstack and actually publishes the
generated setpoints

4.1 Problem Division

In this way the problem has been split up in two smaller subproblems:

1. Generating the list of control setpoints from a geometric path

2. Controlling the UAV by using the list of generated setpoints

¿is problem division is reflected in the chosen ROS nodes. ¿e real control problem lies
naturally in generating the list of setpoints, meanwhile the controlling node is a more technical
implementation issue. ¿e following sections are therefore dedicated to the discussion of those
technical details, including the flight controller node implementation.

4.2 Relevant messages definitions

¿e communication between the ROS nodes is defined bymessages used in di�erent ROS topics.
¿ere are already standard ROS messages available, but in order to have meaningful messages for
the special purpose of using relative altitudes over ground, the Bambi Project introduced some
custom ROS messages. ¿e relevant ones are given in listing 2.1 on the facing page.

16

CHAPTER II. UAV POSITION CONTROL 4. ROS NODE ARCHITECTURE

1 ####################### bambi_msgs/GeoPosition2D #######################
2

3 float64 latitude
4 float64 longitude
5

6

7 ############## bambi_msgs/GeoPositionWithRelativeAltitude ##############
8

9 bambi_msgs/GeoPosition2D geopos_2d
10 float32 altitude_over_ground
11

12

13 ########################### bambi_msgs/Path ############################
14

15 bambi_msgs/GeoPositionWithRelativeAltitude[] geometric_path
16

17

18 ################# bambi_msgs/DynamicFlightConstraints ##################
19

20 float32 max_velocity
21 float32 max_acceleration
22

23

24 #################### bambi_msgs/PathWithConstraints ####################
25

26 bambi_msgs/Path path
27 bambi_msgs/DynamicFlightConstraints flight_constraints
28

29

30 ######################### bambi_msgs/Trajectory ########################
31

32 float32 sample_rate
33 mavros_msgs/PositionTarget[] setpoints

Listing 2.1: Relevant Bambi ROS message definitions

As it is reported, the bami_msgs/GeoPosition2D carries theWGS 84 coordinates, i.e. latitude
and longitude,without altitude information. bami_msgs/GeoPosition2DWithRelativeAltitude
adds then the relative altitude, represented as a floating point value. ¿e geometric path is simply
an array of those relative altitude points.

As an input to the trajectory generation node, a bami_msgs/PathWithConstraintmessage
is used. It contains the geometric path (i.e. bami_msgs/Path) and the dynamical constraints
object. ¿e output of the trajectory generation node, is nothing but a list of setpoints paired with
the setpoint rate fsb, i.e. the bami_msgs/Trajectorymessage.

¿e setpoints are defined as mavros/PositionTargetmessages, shown in listing 2.2 on the
next page.

17

4. ROS NODE ARCHITECTURE CHAPTER II. UAV POSITION CONTROL

1 ###################### mavros_msgs/PositionTarget ######################
2 std_msgs/Header header
3

4 uint8 coordinate_frame
5 # ... [coordinate frame constants]
6

7 uint16 type_mask
8 # ... [type mask constants]
9

10 geometry_msgs/Point position
11 geometry_msgs/Vector3 velocity
12 geometry_msgs/Vector3 acceleration_or_force
13 float32 yaw
14 float32 yaw_rate

Listing 2.2: Position Target (Setpoint) Message Definition

¿e trajectory generator node, from a certain point of view, converts incoming
bami_msgs/PathWithConstraint messages into bami_msgs/Trajectory messages. ¿is im-
plies introducing the dependency on time, since the outcome is nothing but ⟨r∗k⟩k<=m defined in
eq. (2.6) on page 11.

4.3 Mission Controller
¿emission controller node is build as a finite state machine (FSM). Figure 2.8 shows a simplified
version of the complete state machine diagram.

*

MISSION_CANCELLING_RTL

LANDING

COVERAGE_FLIGHT

GENERATING_TRAJECTORY

BAMBI_HOVERING

COVERAGE_PATH_PLANNING

GENERATING_BOUNDARYTAKING_ORTHO_PHOTO

REACHING_MISSION_START_POINT

STARTING_PHOTO_MISSION

TAKING_OFF

ARMING

READY

INIT

landing_detected

failure

failure in �ight

landing_detected

reached_home

bambi_saved

bambi_found

trajectory_ready

path_ready

boundary_generatedortho_photo_ready

mission_item_reached

arm_failure MAX_TRIES times

arm_failure AND tries <= MAX_TRIES

relative_altitude >= takeOffAltitude

relative_altitude >= takeOffAltitude

arm_success

missiontrigger_start

gps_�x

Figure 2.8: Mission Controller Finite State Machine

18

CHAPTER II. UAV POSITION CONTROL 4. ROS NODE ARCHITECTURE

¿e Bambi Project flight mission gets triggered by a dedicated MAVLINK message, fired
from the groundstation and routed through the Pixhawk to the CC. It contains all necessary
information, such as flight altitudes, thermal sensor footprint and mission start point. In the first
few states of the FSM diagram in fig. 2.8 on page 18, the multicopter gets armed and takes o�,
by using mainly the MAVROS interface. Once taken o�, the altitude has to be reached before
starting a waypoint navigation mission to the given WGS 84 mission coordinates. As the mission
start point is reached, the agriculture field boundary is generated and a geometric coverage path is
produced by using other ROS nodes. At this point the nodes relevant for trajectory generation
are reached out.

¿e GENERATING_TRAJECTORY state indeed publishes the geometric path with the rel-
evant dynamic constraints, which triggers the trajectory generator node. ¿e topic
/bambi/mission_controller/trigger_trajectory_generation is used for this purpose.
Once the list of setpoints has been generated, the coverage flight is started, by using the flight
controller node.

It is foreseen, but not implemented yet, to pause the coverage flight when a thermal anomaly
has been detected. ¿rough the modular structure of ROS this can easily be added through an
additional ROS node, which would trigger the bambi_found signal on the mission controller.
¿e hovering then gets handled by the fligh controller node, which pauses the setpoint publishing,
stopping at the current setpoint.

Once the flight controller node finishes the setpoint list, the reached_home signal is fired
which triggers then an automatic landing handled by the PX4 FCU.

4.4 Flight Controller

¿e flight controller node makes use of the set point list and is implemented as another, although
smaller, FSM, shown in fig. 2.9.

REACHED_HOME

HOVERINGFLYING

WAITING_FOR_MODE_CHANGE

PUBLISHING_FIRST_POINTS

READY

coverage_�ight_trigger_received

last_setpoint_reached

hover_trigger

uav_mode_chaned_to_ooard

time_to_change_mode

coverage_�ight_trigger_received

Figure 2.9: Flight Controller Finite State Machine

19

4. ROS NODE ARCHITECTURE CHAPTER II. UAV POSITION CONTROL

Starting State Ending State Condition Action

READY FIRST_SETPOINTS start received save trajectory and start
publishing the first setpoint

FIRST_SETPOINTS MODE_CHANGE 2s passed change to OFFBOARD mode

MODE_CHANGE FLYING mode changed continuously publish setpoints

FLYING HOVERING hover trigger publish current setpoint

HOVERING FLYING hover trigger continue with setpoints

FLYING REACHED_HOME last setpoint reached informmission controller

REACHED_HOME READY stop received free up memory

Table 2.2: Flight Controller State Transition Table11

¿e state transition table (table 2.2) defines the behavior of the flight controller. When the
coverage flight trigger is received, the trajectory is saved internal to the flight controller node and
publishing the first setpoint is started. In fact, the documentation and the PX4 implementation
requires setpoints to be published already before the mode is switched to OFFBOARD:

“Before entering O�board mode, you must have already started streaming setpoints. Other-
wise the mode switch will be rejected.”12

In the flight controller implementation 2 s pass before trying to switchmode. Before publishing
the actual trajectory the confirmation of the mode update is awaited, i.e. the MAVROS mode
topic is expected to change.

4.4.1 Implementation

Most of the ROS nodes in the Bambi Project are implemented using C++13. A short code snippet
from the flight controller node class shown in listing 2.3 on the next page.

¿e class has been designed in such a way that a clean implementation of the state ma-
chine is guaranteed. ¿is is achieved by handling all14 the state changes in onemethod, namely
handleStateMachineCommand(...). ¿e parameter command assumes the value of any possible
state change trigger, from fig. 2.9 on page 19, which is represented by the nested enum class
Command. ¿e second argument, a generic void pointer, eventually identifies a data carrying
object, depending on the command, such as the trajectory in case of a coverage flight trigger.

¿e handleStateMachineCommandmethod is called internally from callback methods, de-
noted by the su�x cb_, which implement mainly ROS subscriber callback functions. In the
implementation of the command-handling method, a switch-case directive decides in each state
the action to be taken, according to the given command.

Furthermore it is worth to notice that the members m_trajectory together with m_index

save the current publishing state, i.e. the setpoint list and the index of the current setpoint which

11Note that in the table, for representation reasons, PUBLISHING_FIRST_SETPOINTS and
WAITING_FOR_MODE_CHANGE have been changed to FIRST_SETPOINTS and MODE_CHANGE respec-
tively

12See https://dev.px4.io/en/ros/mavros_offboard.html, accessed on 2018-09-23
13As a C++ reference the book [19] has been used
14With exception of REACHED_HOME, which is identified and handled in the spin()method

20

https://dev.px4.io/en/ros/mavros_offboard.html

CHAPTER II. UAV POSITION CONTROL 4. ROS NODE ARCHITECTURE

has to be published. Additionally, m_rate holds the used setpoint publishing rate and gets defined
by the incoming coverage flight trigger.

1 //...
2 namespace bambi {
3 namespace flight_controller {
4 class FlightControllerNode
5 {
6 public:
7 FlightControllerNode(const ros::NodeHandle& nodeHandle);
8 void spin();
9

10 enum class State {
11 READY,
12 PUBLISHING_FIRST_POINTS, // wait a few seconds before changing mode
13 WAITING_FOR_MODE_CHANGE,
14 FLYING,
15 HOVERING,
16 REACHED_HOME
17 };
18 enum class Command {
19 COVERAGE_FLIGHT_TRIGGER_RECEIVED,
20 TIME_TO_CHANGE_MODE,
21 UAV_MODE_CHANGED_TO_OFFBOARD,
22 HOVER_TRIGGER
23 };
24 private:
25 ros::NodeHandle m_nodeHandle;
26 ros::Publisher m_publisherSetPosition;
27 //...
28 State m_state;
29 boost::shared_ptr<bambi_msgs::Trajectory> m_trajectory;
30 size_t m_index;
31 ros::Rate m_rate;
32 //...
33

34 void cb_trigger_coverage_flight(CoverageFlightTrigger& trajectory);
35 //...
36 void changeState(FlightControllerNode::State newState);
37 void handleStateMachineCommand(Command command, const void* msg);
38 };
39 }
40 }

Listing 2.3: Flight Controller Class Definition

¿e actual setpoint publishing is accomplished in the spin()method. Listing 2.4 on the next
page shows the former crucial code snippet from the flight controller node class implementation.

Since m_rate is set to the ROS node handle object, calling spinOnce() guarantees the pub-
lishing to be at the desired rate, currently implemented as 50Hz. As it can be seen, only in the
FLYING state, m_index gets incremented. ¿e rest o the code is almost self-explaining.

Anyhow, it should be pointed out that a clean implementation requires the use of amutex to
avoid a race condition when changing state in the spin()method. Since the ROS callbacks may

21

4. ROS NODE ARCHITECTURE CHAPTER II. UAV POSITION CONTROL

be called from di�erent threads, it is possible that the command-handling method overlaps with
the execution of spin(). Due to performance reasons the mutex is acquired only if necessary, i.e.
when the index reaches the end. For simplicity however, this is not shown in listing 2.4.

129 void FlightControllerNode::spin() {
130 ros::AsyncSpinner spinner(4);
131 spinner.start();
132

133 while (ros::ok()) {
134 switch (m_state) {
135 case State::PUBLISHING_FIRST_POINTS:
136 case State::WAITING_FOR_MODE_CHANGE:
137 m_missionStartPositionTarget.header.stamp = ros::Time::now();
138 m_publisherSetPosition.publish(m_missionStartPositionTarget);
139 break;
140 case State::FLYING:
141 ++m_index;
142 if (m_index < m_trajectory->setpoints.size()) {
143 m_trajectory->setpoints[m_index].header.stamp = ros::Time::now();
144 m_publisherSetPosition.publish(m_trajectory->setpoints[m_index]);
145 } else {
146 // reached home --> return index to save value
147 --m_index;
148 std_msgs::Bool b;
149 b.data = true;
150 m_publisherReachedHome.publish(b);
151 changeState(State::REACHED_HOME);
152 }
153 break;
154 case State::REACHED_HOME: // continue to publish last setpoint
155 m_trajectory->setpoints[m_index].header.stamp = ros::Time::now();
156 m_publisherSetPosition.publish(m_trajectory->setpoints[m_index]);
157 }
158 ros::spinOnce();
159 m_rate.sleep();
160 }
161 spinner.stop();
162 }

Listing 2.4: Setpoint publishing in FlightController

4.4.2 Relative Altitude Handling

Since the NED reference frame is relative to the home position (see section 3.1.1 on page 12) and
the altitude profile is not known at priori, keeping a desired altitude relative to ground would be
challenging: ¿e internally generated setpoint list, i.e. the trajectory, contains altitudes meant
to be relative to ground, meanwhile the strict external NED frame FE is relative to the home
position’s altitude, which generally is di�erent.

Fortunately there are PX4 settings, which enable altitude control relative to ground even in
OFFBOARD mode. ¿erefore, no special implementation on the CC is required.

22

CHAPTER II. UAV POSITION CONTROL 4. ROS NODE ARCHITECTURE

4.5 Trajectory Generator

¿e trajectory generator needs to generate the actual setpoint. As already discussed, as an input the
topic /bambi/mission_controller/trigger_boundary provides a PathWithConstraints

message, i.e. the geometric path in WGS 84 format and the maximum velocity and acceleration
magnitudes15.

Given that the setpoints have to be carried out in the local ENU frame with the home position
as origin, first of all the global coordinates have to be transformed into local ones.16 ¿is work is
accomplished by using the geodesy ROS package17.

In particular, listing 2.5 shows the implemented conversion, from WGS 84 to UTM to the
local ENU reference frame with the origin in the home position.

73 for(auto point : pathWithConstraints.path.geometric_path){
74 geographic_msgs::GeoPoint geoPoint
75 = geodesy::toMsg(point.geopos_2d.latitude,
76 point.geopos_2d.longitude);
77 geodesy::UTMPoint UTMPoint(geoPoint);
78 Point3dRelAltitude pointXYZ_relAlt;
79 pointXYZ_relAlt.x = UTMPoint.easting - utmHomePoint.easting;
80 pointXYZ_relAlt.y = UTMPoint.northing - utmHomePoint.northing;
81 pointXYZ_relAlt.alt = point.altitude_over_ground;
82 m_pPathXYZ_relAltitude->push_back(pointXYZ_relAlt);
83 }

Listing 2.5: WGS84 to ENU coordinate frame converstion

In this way all the geometric path is in the local ENU coordinate frame used by PX4. In this
way we got nothing but the mathematical path defined in eq. (2.1) on page 10.

Note that there is no relation with time yet. To define the relation with time is – again – the
control problem (section 2.1 on page 10). Its solution is elaborated in the following sections.

15See section 4.2 on page 16
16See section 3 on page 11
17Installable with sudo apt install ros-kinetic-geodesy, see http://wiki.ros.org/

geodesy, package authorO’Quin Jack, accessed on 2018-09-02

23

http://wiki.ros.org/geodesy
http://wiki.ros.org/geodesy

5. CONSTANT VELOCITY TRAJECTORY CHAPTER II. UAV POSITION CONTROL

Figure 2.10: Sample Coverage Path

Figure 2.10 shows a typical geometric path to follow during a BAMBI mission. As one can
guess this path has already been smoothed using a BSpline interpolation18. ¿e task is therefore
to follow as close as possible the given path, without introducing any systematic error, such as
further interpolation.

5 Constant velocity trajectory

¿e simplest approach to solve the control problem, defined in section 2.1 on page 10, is a constant
velocity trajectory, guaranteeing a constrained change in position per unit time. It is important
to point out, that a constant velocity trajectory can not guarantee constraints in accelerations.
However, it conveniently implies, that the spatial distance between two setpoints is constant,
namely nominalDistance = vmax/ fsp, where fsp denotes the setpoint rate in [Hz].

¿is reduces the problem into dividing the path in equally spaced segments, getting the new
setpoints ⟨r∗k⟩k<=m out of the the geometric path ⟨pk⟩k≤n (see eqs. (2.1) and (2.2) on page 10).
Figure 2.11 on the facing page illustrates the problem.

18See e.g. [20]

24

CHAPTER II. UAV POSITION CONTROL 5. CONSTANT VELOCITY TRAJECTORY

Figure 2.11: Spatial sampling of the geometric path

Reducing the problem to spatial path sampling, allows to solve exclusively a geometric problem.
Figure 2.11 sketches a general situation in which a sequential algorithm could be, i.e. at position i
in the list of setpoints p[].

As the illustration already points out, in essence, there may be two cases:

1. More than 1 sample has to be generated between two geometric points, i.e. between pi−1
and pi in the illustration, 3 samples are needed

2. No sample at all has to be generated, i.e. between pi and pi+1 no sample is needed for
satisfying the velocity constraint and the setpoint rate fsp

For being able to sample an appropriate segment (pi , p j), p j must be identified in the list of
points from the geometric path. A next position j has therefore to be determined, which is distant
at least nominalDistance. ¿is is essentially accomplished by iterating through the geometric
path, starting from i + 1, until a next point guaranteeing the required distance is found. It is
therefore clear, that the segment (pi , p j) to be sampled, is generally not chosen by j = i + 1, as
illustrated also in fig. 2.11.

Note that this approach may also skip ‘‘angles’’, i.e. the original shape could get lost. ¿is can
be observed in the following cases:

1. If there is a residual distance which could not be sampled in the previous step, the corner
point pi e.g. will not be part of the setpoint trajectory. Indeed, considering the samples
r∗m−3 and r∗m−2 it is evident that a straight line connecting them will not pass through pi .

2. If the point pi+1 was not on the segment (pi , p j), and neither distant more than
nominalDistance, the generated samples would lie anyways on the segment (pi , p j)
without considering the eventual corner introduced by pi+1.

In any case, those introduced errors are governed by the sample rate and can be seen as a natural
outcome of the used procedure. ¿e algorithm undeniably has to be lossy, considering the discrete
format of the coordinates. If those kind of issues had an impact in a practical implementation,
the sample rate simply would have to be increased.

Once the segment to be sampled is chosen, it is anyhow always possible to determine a unit
vector v̂ i which points from pi to p j. Using that vector the sample generation is quite intuitive.

25

5. CONSTANT VELOCITY TRAJECTORY CHAPTER II. UAV POSITION CONTROL

In particular, multiplies of nominalDistance are used to add to the position pi equally spaced
portions in direction of v̂ i .

It is worth to point out that numerical problems involving the calculation of the unit vector v̂ i
are avoided implicitly by choosing the segment distance to be greater than nominalDistance.

Out of the given figure with the provided reasoning, an algorithm can be deduced. Algo-
rithm 2.1 shows a pseudocode of the used implementation.

Algorithm 2.1 Constant Velocity Setpoint Generation
Input: p1 . . . pn
Output: r∗1 . . . r∗m

1: function GenerateSetpoints(p[], vmax , fsp)
2: nominalDistance ← vmax/ fsp
3: m ← 0 ▷ m denotes the number of setpoints
4: i ← 1 ▷ i denotes the index in the path points list
5: m ← m + 1
6: r∗[m]← p[i] ▷ Insert first point
7: residual ← 0.0
8: reachedEnd ← false
9:
10: while not reachedEnd do
11: j ← i
12: repeat
13: j ← j + 1
14: if j > n then
15: reachedEnd ← true
16: end if
17: distance = residual +Distance(p[i], p[j])
18: until distance ≥ nominalDistance
19:
20: if not reachedEnd then
21: s ← Floor(distance/nominalDistance) ▷ s samples between i and j
22: v̂ ← (p[j] − p[i])/Distance(p[i], p[j]) ▷ Unit Vector from p[i] to p[j]
23: for k ← 1 to s do
24: r∗new ← p[i] + (k ⋅ nominalDistance − residual) v̂
25: m ← m + 1
26: r∗[m]← r∗new
27: end for
28: residual ← Distance(r∗[m], p[j])
29: i ← j
30: end if
31: end while
32: m ← m + 1
33: r∗[m]← p[n] ▷ Insert last point
34: return r∗[]
35: end function

26

CHAPTER II. UAV POSITION CONTROL 6. VELOCITY FEED FORWARD CONTROL

Note that algorithm 2.1 on page 26 assumes the existence of the functions Floor andDistance
which round floating point values downward to the next integer value and calculate the euclidean
distance respectively.

¿e actual implementation di�ers just in some technical details, i.e. di�erent object types and
the fact that the velocity is constrained just in a 2D plane, since we do not predict the landscape
ground profile, see section 4.4.2 on page 22. It is therefore not useful to consider the velocity
limitations along the z-axis, because the actual ground profile may vary significantly and hence
also the related actual velocity along zB. In the actual flight dynamics enough rest trust has to be
reserved for correct ground profile following.

Listing 2.6 shows a brief code snippet from the implementation, containing the initialization
of the setpoint object (PositionTarget, see listing 2.2 on page 18).

135 //prepare PositionTarget message
136 PositionTarget posTargetLocal;
137 posTargetLocal.coordinate_frame = PositionTarget::FRAME_LOCAL_NED;
138 posTargetLocal.type_mask = PositionTarget::IGNORE_AFX |
139 PositionTarget::IGNORE_AFY |
140 PositionTarget::IGNORE_AFZ |
141 PositionTarget::IGNORE_YAW_RATE;

Listing 2.6: Setpoint object preparation in TrajectoryGeneratorNode

As it can be seen, some properties for the reference frames have to be set, as well as flags
made for ignoring the unused acceleration values, to enable a valid object recognition in the PX4
firmware implementation.

6 Velocity Feed Forward Control
Since the trajectory is now defined, i.e.19

r∗(t) =
⎛
⎜
⎝

x∗(t)
y∗(t)
z∗(t)

⎞
⎟
⎠

(2.7)

the control behavior can easily be improved by adding a velocity feed forward path. As
discussed in section 1.1 on page 8, PX4 currently just supports a feed forward path for the first
order derivate, i.e. only velocity feed-forward.

Feed-forward control is a well known approach (see e.g. [21]), which introduces control action
in absence of feedback errors. ¿is basically means that, instead of waiting for a position error, the
internal velocity controller is already triggered by the provided values.

To calculate the velocity values, the first order derivative in time of eq. (2.7), i.e. ṙ∗(t) is
needed. Performing the numerical derivatives of the generated setpoint sequence (see eq. (2.6) on
page 11) can be accomplished in di�erent ways. ¿e most simple approach is the finite di�erence
method. In [22] such local methods, among others, are compared with global methods. ¿e author
suggests to prefer global over local methods.

19see also eq. (2.2) on page 10

27

6. VELOCITY FEED FORWARD CONTROL CHAPTER II. UAV POSITION CONTROL

In the specific usecase, the applied setpoint frequency is about 50Hz, which comes down to
a period of 0.02 s. Although 32-bit floating point precision should give fairly satisfying results,
a global method has been used. It consists in building up a spline interpolation and exploit its
derivatives.

6.1 Implementation

Professor Enrico Bertolazzi from the University of Trento published online20 a C++ library
providing spline interpolation. ¿e generated splines are carried out with derivatives up to the 4th
order.

¿ree curves x∗(t), y∗(t), z∗(t) are prepared inside the setpoint generation loop of algo-
rithm 2.1 on page 26. Later on in the trajectory generator node the following code snippet in
listing 2.7 is su�cient to provide the needed velocity values.

212 curveX->build();
213 curveY->build();
214 curveZ->build();
215

216 for (int i = 0; i < m_pPositionTrajectoryENU->size(); ++i) {
217 // better computation than addition in loop
218 double t = sampleTime * i;
219 mavros_msgs::PositionTarget& setpoint
220 = m_pPositionTrajectoryENU->operator[](i);
221 setpoint.velocity.x = curveX->D(t);
222 setpoint.velocity.y = curveY->D(t);
223 setpoint.velocity.z = curveZ->D(t);
224 // head always towards where we are going
225 setpoint.yaw = atan2(setpoint.velocity.y, setpoint.velocity.x);
226 setpoint.yaw_rate = atan2(curveY->DD(t), curveX->DD(t));
227 }

Listing 2.7: Derivative calculation in TrajectoryGeneratorNode

¿e build()method call on the spline objects at the beginning of listing 2.7, interpolates the
previously added points by calculating internally the coe�cients. Later on, the derivatives can be
easily be computed by using D(t), which yields the 1st order derivatives.

To get the right yaw heading the direction of the velocity vector is computed. Most conveniently,
the function atan2 from the math library is used. ¿e yaw rate, i.e. the angular velocity of the
yaw angle, in contrast is given by the direction of the acceleration vector.

20See https://github.com/ebertolazzi/Splines, referring inter alia to [20]

28

https://github.com/ebertolazzi/Splines

CHAPTER II. UAV POSITION CONTROL 7. SIMULATION RESULTS

80
90

100
110

120
130

140

-10

0

10

20

30

40

50

9

9.5

10

10.5

11

Figure 2.12: Velocity Vector Plot

To qualitatively control the results from the algorithms, the velocity vectors can be plotted
along the generated trajectory. Figure 2.12 shows a 3-dimensional representation in the ENU
frame of a chosen sector from the trajectory. As it can be seen, the vectors have – as desired – a
fixed length, in this specific case of 4m/s.

7 Simulation Results

As pointed out already in section 1.1 on page 8, PX4 supports various simulation frameworks.
Major plugins, including laser distance sensor and more, are freely available.21.

¿e used simulation options are evaluated in a master thesis from the Polytechnic University
of Milan [23].

7.1 SITL Environment

One possible choice for simulating FCUs is known as So ware In ¿e Loop (SITL). It implies
pure so ware simulation running in the loop, which basically means that physical actuators are
simulated in a (so ware) physics engine, similar to game engines, which provide so ware feedback
of various simulated sensors. In this way the FCU runs in the loop, i.e. with feedbacks from the
physics simulation.

21See e.g. https://dev.px4.io/en/simulation/gazebo.html, accessed on 2018-09-06

29

https://dev.px4.io/en/simulation/gazebo.html

7. SIMULATION RESULTS CHAPTER II. UAV POSITION CONTROL

Figure 2.13: Simulation Architecture

Figure 2.1322 shows the general communication architecture between the di�erent components
in the simulation environment. MAVLINK, routed through User Datagram Protocol (UDP),
is used to exchange the relevant information. Since it all happens on the same physical system,
di�erent UDP ports are used. Note that for any two-way communication two di�erent UDP
sockets on the receiver sides are opened, at the specified port.

¿e simulator in the right lower corner is the actual physics engine. Di�erent physics engines
are supported in PX4. However, mainly for the availability of models and advanced sensors such
as 2-dimensional laser scanners, Gazebo has been chosen.

MAVROS together with the Bambi autopilot is running in the represented API / O�board box.
From the QGroundControl so ware the mission trigger can be fired, a er which the simulation
autonomously carries out the whole coverage flight.

¿e simulation can be supervised through the 3D rendering and, more importantly, analyzed
through the regularly generated flight logs.

7.1.1 Gazebo

Gazebo is a common open source robot simulator which provides a lot of di�erent environments
for indoor and outdoor simulations. It includes a robust physics engine, a graphical visualization
and good integration with ROS.

¿e simulation for the Bambi Project has been customized in various aspects. On of them
is the home position, which has been updated to the real test field, by setting the environment
variables PX4_HOME_LAT, PX4_HOME_LON and PX4_HOME_ALT.

¿e simulation is started by executing the provided ROS ‘‘Iris’’ model launch files with
updated 3D worlds.

22See also https://dev.px4.io/en/simulation/#sitl-simulation-environment, accessed
on 2018-09-24

30

https://dev.px4.io/en/simulation/#sitl-simulation-environment

CHAPTER II. UAV POSITION CONTROL 7. SIMULATION RESULTS

7.1.2 Simulated 3DWorld

¿e use of the staticMapPlugin shipped with Gazebo allows to render Google Earth tiles as a
ground plane. Although the altitude profile could not be included in this way, the realistic ground
image e�ectively marked the real field borders.

On top of the flat ground, some 3D objects were placed in order to provide obstacles and and
more realistic look. Figure 2.14 shows a screen-shot of the modified Gazebo simulation world.

Figure 2.14: Gazebo Simulated 3DWorld

Figure 2.15: Simulated IRIS Model

As a model, the ‘‘Iris’’ quadcopter was used, shown in fig. 2.15. ¿e main reason for the
choice is the availability of sensors that can be mounted on top of the model, without the need for
programming or modeling their 3D appearance.

7.2 Tracking Performance Evaluation
To compare the tracking performance, a BAMBI mission has been triggered, and the *.ulg flight
log file has been analyzed. ¿is could be accomplished mainly by using the ulog2csv program,
which is part of the PX4 so ware collection.

31

7. SIMULATION RESULTS CHAPTER II. UAV POSITION CONTROL

Figures 2.16 and 2.17 on this page and on the next page show the test flights, with and without
velocity feed forwarding. Both flights have been performed using a constant velocity trajectory of
4m/s.

At the first look, the standard position tracking without velocity feed forwarding seems to
have a better performance, especially in the right part of the graph. ¿e turning points are handled
way better by the simpler approach, i.e. with far less overshoot. In the velocity feed-forwarding
case, those overshoots amount to almost 2m.

¿e estimated position in the standard approach is more o en directly on the desired track
than in the velocity feed-forwarding case.

Anyhow, it is important to clarify that those plots lack of time dependency, i.e. the relation
with time is lost, when plotting xE against yE (see section 3.1.1 on page 12).

0 50 100 150 200

East [m] in NED Frame

-40

-20

0

20

40

60

80

N
o
rt

h
 [
m

]
in

 N
E

D
 F

ra
m

e

UAV Standard Position Tracking

Estimated Postion

Desired Position

Figure 2.16: Simulation Standard Position Tracking Performance

32

CHAPTER II. UAV POSITION CONTROL 7. SIMULATION RESULTS

0 50 100 150 200

East [m] in NED Frame

-40

-20

0

20

40

60

80

N
o
rt

h
 [
m

]
in

 N
E

D
 F

ra
m

e
UAV Position Tracking with Velocity Feed-Forwarding

Estimated Postion

Desired Position

Figure 2.17: Simulation Velocity Feed-Forwarding Tracking Performance

10 20 30 40 50

East [m] in NED Frame

-30

-25

-20

-15

-10

-5

0

5

N
o
rt

h
 [
m

]
in

 N
E

D
 F

ra
m

e

Standard Position Control

Desired Position

Estimated Postion

10 20 30 40 50

East [m] in NED Frame

-30

-25

-20

-15

-10

-5

0

5

N
o
rt

h
 [
m

]
in

 N
E

D
 F

ra
m

e

Velocity Feed-Forward

Desired Position

Estimated Postion

Figure 2.18: Simulation Position Tracking Comparison

Figure 2.18 gives a better insight on the tracking di�erences. It clearly can be observed, that

33

7. SIMULATION RESULTS CHAPTER II. UAV POSITION CONTROL

velocity feed forwarding, although presenting a bigger overshoot at the turning points, preserves
the original shape of the trajectory much better.

It is also evident, that without velocity feed-forwarding the actual position lacks far more
behind the desired position. ¿is can be seen considering the starting point of the setpoint curve
with respect to the starting point of the estimated position curve.

To go further into detail in the time dependency, table 2.3 can be considered. It gives a
comparison on the tracking errors in the 2-dimensional plane, i.e.

e(t) =
√

(∆x)2 + (∆y)2 (2.8)

Standard Position Control Velocity Feed-Forward

Mean Value 5.507m 2.195m
Standard Deviation 1.308m 1.482m

Minimum 0.693m 0.001m
Maximum 8.397m 5.589m

Table 2.3: Position Tracking Error Comparison

With a di�erence of more than 3m in the mean position tracking error, the responsiveness of
a velocity feed-forward approach is verified as expected.

Even better insights give the boxplots in fig. 2.19. Eminently, the tracking error during velocity
feed forward reaches basically zero in some cases, which shows the e�ective control action of the
feed forward path. Using just a feedback action, indeed entails a minimum error of approximately
70 cm.

Standard Position Control Velocity Feed-Forward

0

1

2

3

4

5

6

7

8

[m
]

Planar Position Error Comparision

Figure 2.19: Position Error Comparison

34

CHAPTER II. UAV POSITION CONTROL 7. SIMULATION RESULTS

To further improve tracking, the use of an acceleration feed-forward path could be useful, but
it is not available in PX4 yet.23

¿e real problem however, is that the multicopter dynamics are not considered during tra-
jectory generation. Maintaining a constant velocity of 4m/s in the sharp turns is physically
impossible, which is why significant overshoots occur.

23

Seehttps://github.com/px4/Firmware/blob/c5b954daccdcc5195e146844f42699cdce63650d/
src/lib/FlightTasks/tasks/Offboard/FlightTaskOffboard.cpp#L167

35

https://github.com/px4/Firmware/blob/c5b954daccdcc5195e146844f42699cdce63650d/src/lib/FlightTasks/tasks/Offboard/FlightTaskOffboard.cpp#L167
https://github.com/px4/Firmware/blob/c5b954daccdcc5195e146844f42699cdce63650d/src/lib/FlightTasks/tasks/Offboard/FlightTaskOffboard.cpp#L167

Chapter III

Collision Avoidance

In this chapter a simple but e�ective security measure is developed, avoiding collisions during the
mission’s flight by detecting obstacles through a 2D laserscan. Simulation results are presented
and discussed.

1 Use Case Analysis
¿e Bambi Project, performing a coverage flight over a cultivated grassland field, in the nominal
flight behavior should not encounter major obstacles. ¿e mountainous landscape challenges the
autopilot at most with some alone standing trees or transmission towers. Major obstacles such as
forests or living houses are already excluded by the generated coverage path.

In this way, the collision avoidance has just to be a security measure, since encountering
obstacles is not the nominal case. A security measure has to react as fast as possible, avoiding any
kind of delays: ¿e flight velocity is planned to be around 5m/s, which means e.g. just 500ms of
delay would introduce a change of 2.5m in position, towards the obstacle in the worst case.

2 Control Signal Application
Figure 3.1 shows the control diagram of the PX4 flight-stack.

Position
Controller

Attitude
Controller

Onboard
Controller

Desired
Trajectory

Quadrocopter

~r, ~v,~a q ~�

~�cmd
~Fcmd

~acmd

Feedforward

~rcmd

~vff ~aff ~�ff

�cmd
collcmd

Figure 3.1: PX4 Multi Copter Controller Diagram1

1Taken from [24, p. 5]

37

3. DISTANCE SENSING CHAPTER III. COLLISION AVOIDANCE

Since a detected obstacle needs to influence in some way the multicopter’s position, at a
certain level in the control loop, an additional control component has to be applied, namely the
one responsible for performing an evasive maneuver.

It is of common knowledge that inner control loops are generally faster. If the di�erence of
the smallest time constant is of more than one order of magnitude, some design techniques for
the outer loops allow even to neglect the existence of the inner loops.

Since reaction time is a major concern in a security measure, it is most convenient to apply the
control signal in the inner loops. ¿e control signals in the inner loops however, refer to di�erent
systems of reference. ¿e attitude controller e.g. acts on orientation angles of the body reference
frameFB. ¿e acmd is still expressed in the external NED reference frameFE , hence it is advisable
to apply the collision avoidance signal to acmd . In this way the change of system of reference from
the laser scan, attached to the body frame, to acmd , i.e. the NED frame, is realizable without major
complications. In particular the object avoidance control signal is applied as a sum to acmd . In this
way the trajectory tracking performed by the position controller will not be stopped, as desired.

In the PX4 implementation, acmd is known as normalized thrust setpoint F sp.

3 Distance Sensing
¿e distance sensing, as already discussed in section 2.2 on page 5 will be performed by a 2D laser
scan. ¿ere are many device available on the market, such as ‘‘RPLidar’’. Sample rates can be in
the order of 10 000Hz.

3.1 Available Hardware
To avoid excessive development expenses, a low-cost solution is chosen. It consists of a single
distance measurement rotated by a stepper motor, which is under control by an Arduino Mini.
¿e used Light Detection and Ranging (LIDAR) device is the Benewake Mini. It measures under
good conditions up to 8m and more, at a sampling frequency of 100Hz.

4 Collision Avoidance¿rust Definition
Supposing to have arbitrary radial distance values d(θ)∀θ in the body NED frame2, the question
arises in which direction should the vehicle counteract in order to avoid a collision. ¿e intuitive
approach is to define a unit direction vector pointing to the opposite direction:

âcol ission =
1

∫
2π
0 w(d(θ))dθ ∫

2π

0
w(d(θ)) (− cos θ− sin θ) dθ (3.1)

Where w(d) is a weight function, that generally should accountmore for smaller distances,
since they present a higher risk. It is worth noting that the resulting direction âcol ission from
eq. (3.1) is nothing but the integral mean value of the weight function, to be applied in the local
body NED frame.

2Note that this means having clockwise angles starting from body-north when seen from above, see section 3 on
page 11

38

CHAPTER III. COLLISION AVOIDANCE4. COLLISION AVOIDANCE THRUST DEFINITION

In practice though, the used sensors will always have a minimum and a maximummeasurable
distance, so just in some cases a valid measurement can be made. To account for this fact in
eq. (3.1) on page 38, we may introduce

δval id(d) =
⎧⎪⎪⎨⎪⎪⎩

1 if Dmin <= d <= Dmax

0 otherwise
(3.2)

¿is can be easily incorporated in the weight function:

w(d) = δval id(d)w∗(d) (3.3)

Note that in this way, eq. (3.1) on page 38 becomes valid if, and only if

∃ θ ∈ [0, 2π] ∣ δval id(d(θ))≠ 0 (3.4)

In the actual implementation this gets implemented by some if directive.

4.1 ¿rust Magnitude
¿emagnitude, or how intensive the reaction is, should be determined by the smallest distance, or
in other words, considering the highest weight:

max
θ∈[0, 2π]

w(d(θ)) (3.5)

Note that this is not equivalent to making the mean reaction: It considers always the worst
case, i.e. the highest danger, instead of making «a mean value of dangers».

To get a reasonable guess on a right weighting approach, a simple example calculation shall be
considered. Suppose a vehicle moving at a given velocity v0 with respect to some inertial reference
frame, has to stop at a certain distance dstop using a constant acceleration of magnitude areq. ¿e
governing equation is:

x(t) = v0 t −
1
2
areq t2 (3.6)

At a time t f , where the vehicle should have been stopped, the following conditions can be
imposed:

⎧⎪⎪⎨⎪⎪⎩

x(t f) = dstop
ẋ(t f) = 0

⇒
⎧⎪⎪⎨⎪⎪⎩

v0 t f − 1
2 areq t

2
f = dstop

v0 − areq t f = 0
(3.7)

(3.8)

Solving the system by eliminating t f yields:

areq =
v20

2 dstop
(3.9)

¿is means that the required acceleration to stop the vehicle is inversely proportional to the
available braking distance and quadratically proportional to the initial speed.

A first approach may therefore be:

39

5. IMPLEMENTATION CHAPTER III. COLLISION AVOIDANCE

w(d)∝ 1
d

(3.10)

5 Implementation
To accomplish the implementation, eqs. (3.1) and (3.5) on page 38 and on page 39 have to be
discretized, i.e.:

âcol ission =
1

∑n
i=1w (di)

n

∑
i=1
w (di) (− cos (i

2π
n)

− sin (i 2πn)) (3.11)

where di with 1 ≤ i ≤ n denotes the sample in the ith segment. Note that the segment size ∆θ
cancels out, since it can be brought out of the sum in numerator and denominator. As a weight
function, the one with the incorporated validation from eq. (3.3) on page 39 has to be used.

¿e actual weight can be taken as:

w∗(d) = Dmax

d
− 1 (3.12)

with Dmin ≤ d ≤ Dmax . Figure 3.2 shows an example plot with Dmax = 6m.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

9

10

Figure 3.2: Weight Function Plot

Starting from the maximum detectable distance Dmax a smooth control action is introduced.
¿is means that when an obstacles enters the scanning field, no abrupt reaction occurs, but rather
a so ly increasing thrust against the obstacle is applied.

As pointed out already, in the PX4 implementation acmd is implemented as a normalized
thrust setpoint F sp, i.e. the value 1.0 means full usage of the available thrust. So unlike the axis

40

CHAPTER III. COLLISION AVOIDANCE 5. IMPLEMENTATION

label in fig. 3.2 on page 40 suggests, the real implementation uses a dimensionless thrust action of
the same magnitude.

¿e magnitude gets, as already mentioned, summed to the thrust desired by the position
controller. A erwards a saturation is applied, in order to maintain the vehicle’s attitude under
secure limits. It thus makes sense to apply also values greater than 1.0, in order to eventually be
able to cancel out and act against the desired flight direction, which may be towards the obstacle.

As it can be seen in fig. 3.2 on page 40 at half of the detectable range, full thrust is applied.
¿e further crucial step is to get the distance information into the PX4 firmware. A standard

MAVLINK message is used for this purpose. Any kind of LIDAR can simply transmit a message
of the given type throughMAVLINK to the FCU, and obstacle avoidance gets handled at firmware
level.

5.1 MAVLINKMessage
¿e standardized MAVLINK3 message #330 can grab all the information of a 2D laserscan. A
compact version of the definition is shown in table 3.14

Field Name Type Description

time_usec uint64_t Timestamp

sensor_type uint8_t Class id of the distance sensor type

distances uint16_t[72]

Distance of obstacles around the UAV with index 0
corresponding to local North.
A value of 0 means that the obstacle is right in front of the sensor.
A value of max_distance +1 means no obstacle is present.
A value of UINT16_MAX for unknown/not used.
In a array element, one unit corresponds to 1cm.

increment uint8_t Angular width in degrees of each array element

min_distance uint16_t Minimum distance the sensor can measure

max_distance uint16_t Maximum distance the sensor can measure

Table 3.1: MAVLINK Obstacle Distance Message Definition

5.1.1 Gazebo Laser Scan

For Gazebo, as already mentioned in section 7.1.1 on page 30 there exists a plugin which emulates
the RPLidar. It can be configured in terms ofminimumdistance, maximumdistance and sampling
frequency. Fortunately it can be set up to collaborate with MAVROS for directly publishing the
required mavlink message.

During the implementation one might encounter some open bugs like https://
github.com/PX4/Firmware/issues/9156, which are quite recent, underlining again
the active development and large community working with PX4. ¿e following configuration
however, worked out as expected:

3See section 1.1.2 on page 8 on page 8
4See http://mavlink.org/messages/common#OBSTACLE_DISTANCE, accessed on 2018-09-08

41

https://github.com/PX4/Firmware/issues/9156
https://github.com/PX4/Firmware/issues/9156
http://mavlink.org/messages/common#OBSTACLE_DISTANCE

5. IMPLEMENTATION CHAPTER III. COLLISION AVOIDANCE

1 <sensor name="laser" type="ray">
2 <!-- ... -->
3 <plugin name="laser" filename="libRayPlugin.so" />
4 <plugin name="gazebo_ros_head_rplidar_controller"
5 filename="libgazebo_ros_laser.so">
6 <robotNamespace>mavros</robotNamespace>
7 <topicName>obstacle/send</topicName>
8 <frameName>rplidar_link</frameName>
9 </plugin>
10 <!-- ... -->
11 </sensor>

Listing 3.1: Iris RPLidar Configuration

¿e crucial configuration is the right setup of the ROS namespace and topic in listing 3.1.
Furthermore, to avoid invalid readings, the minimum distance has to be set to 40 cm for the iris
model.

5.2 PX4 Firmware Modification

By following the controller scheme from fig. 3.1 on page 37 into the firmware of PX4, it
results that the right point to adapt the control logic for collision avoidance is in the file
mc_pos_control_main.cpp.

In listing 3.2 on the next page, a simplified version of the code modification is shown.
¿e first part consists in parsing the MAVLINK message as specified by table 3.1 on page 41.

Basically the program iterates through all the segments which have been measured by considering
only the valid onces. ¿is makes up an implemented version of the mathematical function δval id
from eq. (3.2) on page 39. Along the valid segments, the smallest one is determined as well as the
weight for determining the direction as specified in eq. (3.11) on page 40. Unlike in the equation,
there is no practical need to divide by the length to obtain a unit vector, since the resulting angle,
given by atan2() would remain unchanged. However, this calculation is only performed if there
is at least one valid angle, which is nothing but the condition provided in eq. (3.4) on page 39.

It is important to point out that the gazebo simulation provided the obstacle distance position
counter-clockwise from body south, not as specified by the MAVLINK message in table 3.1 on
page 41. ¿is is why a rather particular angle calculation is carried out, i.e. π2 − θobstacl e .

In order to transform the angle from the body reference frame FB to the external NED frame
FE5, the state variable yaw is used. ¿e function fmod() then normalizes the angle, in such a way
that it is in the interval [0, 2π].

¿eminimum distance is then filtered, with a Low Pass (LP) filter for experimental reasons, to
see if eventual oscillations can be damped. ¿is makes it necessary to internally save the last valid
angle, because it may happen that the filtered thrust is still active while no obstacle is detected
anymore.

5see section 3 on page 11

42

CHAPTER III. COLLISION AVOIDANCE 5. IMPLEMENTATION

401 int numberOfSummedAngles = 0;
402 float segmentWidthInRad = math::radians((float)_obstacle.increment);
403 float obstacleLocalN = 0.f;
404 float obstacleLocalE = 0.f;
405 float objectAvoidanceThrustMagnitude = 0.f;
406 _ca_thrust.lowest_distance = _obstacle.max_distance;
407

408 for (int i = 0; i < 72; ++i) {
409 if (_obstacle.distances[i] == UINT16_MAX) {
410 break; // END REACHED
411 }
412

413 if (_obstacle.distances[i] <= _obstacle.min_distance ||
414 _obstacle.distances[i] >= _obstacle.max_distance) {
415 // skip invalid element
416 continue;
417 }
418

419 // VALID SEGMENT
420 ++numberOfSummedAngles;
421

422 float weight = -1.f + _obstacle.max_distance / _obstacle.distances[i];
423

424 if (_ca_thrust.lowest_distance > _obstacle.distances[i]) {
425 _ca_thrust.lowest_distance = _obstacle.distances[i];
426 }
427

428 obstacleLocalE += weight * sinf(i*segmentWidthInRad);
429 obstacleLocalN += weight * -cosf(i*segmentWidthInRad);
430 }
431

432 // filter minimum distance
433 _ca_thrust.lowest_distance_filtered =
434 _lpFilterObjectAvoidance.apply(_ca_thrust.lowest_distance);
435

436 if (numberOfSummedAngles > 0) {
437 float angleLocalNE = M_PI/2.f - atan2(obstacleLocalN, obstacleLocalE);
438 float angleGlobalNE = fmod((_states.yaw + obstacleAngleLocalNE), 2*M_PI);
439 // angle valid for update
440 _lastAngle = obstacleAngleGlobalNE;
441 }
442

443 float weight = -1.f +
444 _obstacle.max_distance / _ca_thrust.lowest_distance_filtered;
445

446 weight = std::fmax(weight, 0.f);
447

448 _resultantThrust(0) = -cosf(_lastAngle) * weight;
449 _resultantThrust(1) = -sinf(_lastAngle) * weight;

Listing 3.2: Collission Avoidance¿rust Calculation

43

6. SIMULATION RESULTS CHAPTER III. COLLISION AVOIDANCE

5.2.1 ¿rust Application

Listing 3.3 shows the actual application of the previously calculated thrust. As previously men-
tioned, a saturation is applied to retain safe attitude angles.

720 Vector2f thrust_desired_NE;
721 thrust_desired_NE(0) = thr_sp(0) + _resultantObjectAvoidanceThrust(0);
722 thrust_desired_NE(1) = thr_sp(1) + _resultantObjectAvoidanceThrust(1);
723

724 float thrust_max_NE_tilt = fabsf(thr_sp(2)) * tanf(constraints.tilt);
725 float thrust_max_NE = sqrtf(THR_MAX*THR_MAX - thr_sp(2)*thr_sp(2));
726 thrust_max_NE = math::min(thrust_max_NE_tilt, thrust_max_NE);
727

728 thr_sp(0) = thrust_desired_NE(0);
729 thr_sp(1) = thrust_desired_NE(1);
730

731 // Saturate thrust in NE-direction.
732 if (thrust_desired_NE * thrust_desired_NE > thrust_max_NE * thrust_max_NE) {
733 float mag = thrust_desired_NE.length();
734 thr_sp(0) = thrust_desired_NE(0) / mag * thrust_max_NE;
735 thr_sp(1) = thrust_desired_NE(1) / mag * thrust_max_NE;
736 }

Listing 3.3: Collission Avoidance¿rust Application

5.2.2 Logging

Since the controller has to satisfy realtime constraints, logging the values has to be performed
in another thread. Inter alia for this reason, PX4 uses special uORB topics. For the newly
implemented collision avoidance, a dedicated uORB topic has been added to the firmware. ¿e
topic saves inter alia the thrust magnitude and the measured distance. ¿is allows to generate the
graphs presented in the next section out of the flight logs, just in the same manner as in section 7
on page 29.

6 Simulation Results

As it can be seen from fig. 3.3 on the facing page, the collision avoidance thrust is summed up to
the desired thrust coming from the position controller. Once an obstacle is detected, the impact
on the xy axis is noticable and anti-proportional increasing with decreasing distance. ¿anks to
the pole in 0 of the weight function (see fig. 3.2 on page 40), a collision of the object, assuming a
valid measurement, is almost impossible.

To obtain those test results, an auto mission has been created which piloted the drone towards
a 3D house. In this case, a successful evasive maneuver could be performed, as we see from the
xE and yE thrust graphs.

44

CHAPTER III. COLLISION AVOIDANCE 6. SIMULATION RESULTS

40 41 42 43 44 45 46 47 48 49 50

t [s]

-0.4

-0.2

0

0.2

0.4

0.6

0.8
n

o
rm

a
liz

e
d

 t
h

ru
s
t

[x
]

Collision Avoidance Normalized Thrust Impact X [NED]

Desired Thrust

Collission Avoidance Thrust

Outgoing Setpoint

40 41 42 43 44 45 46 47 48 49 50

t [s]

-1.5

-1

-0.5

0

0.5

n
o

rm
a

liz
e

d
 t

h
ru

s
t

[x
]

Collision Avoidance Normalized Thrust Impact Y [NED]

Desired Thrust

Collission Avoidance Thrust

Outgoing Setpoint

Figure 3.3: Collision Avoidance normalized¿rust Impact in XY [NED]

Figure 3.4a on the following page illustrates the mapping from the distance to the thrust
magnitude (instead of considering x and y separately). ¿e respective RPY behavior is given in
fig. 3.4b on the next page. Even though the thrust mapping increases smoothly starting from the

45

6. SIMULATION RESULTS CHAPTER III. COLLISION AVOIDANCE

maximum distance Dmax , a relative abrupt stop can be noticed following the roll angle.

40 41 42 43 44 45 46 47 48 49 50

time [s]

-3

-2

-1

0

1

2

3

4

5

6

M
e
a
s
u
re

d
 M

in
im

u
m

 D
is

ta
n
c
e
 [
m

]

0

0.5

1

1.5

2

2.5

3

3.5

4

N
o
rm

a
liz

e
d
 c

o
lli

s
s
io

n
 a

v
o
id

a
n
c
e
 T

h
ru

s
t
M

a
g
n
it
u
d
eCollision Avoidance Thrust Magnitude

Measured Minimum Distance

Collission Avoidance Thrust

(a) Minimum Distance mapped to¿rust Magnitude

40 41 42 43 44 45 46 47 48 49 50

time [s]

-40

-20

0

P
it
c
h

 [
°]

PITCH

40 41 42 43 44 45 46 47 48 49 50

time [s]

-40

-20

0

20

R
o

ll
[°

]

ROLL

(b) Roll Pitch Behavior during Active Collision Avoidance

Figure 3.4: Collision Avoidance Behavior

46

CHAPTER III. COLLISION AVOIDANCE 6. SIMULATION RESULTS

Figure 3.5a shows the same graph, but with a LP filter applied.

165 170 175 180

time [s]

-3

-2

-1

0

1

2

3

4

5

6

M
e
a
s
u
re

d
 M

in
im

u
m

 D
is

ta
n
c
e
 [
m

]

0

0.5

1

1.5

2

2.5

3

3.5

4

N
o
rm

a
liz

e
d
 c

o
lli

s
s
io

n
 a

v
o
id

a
n
c
e
 T

h
ru

s
t
M

a
g
n
it
u
d
eCollision Avoidance Thrust Magnitude with LP Filter

Measured Minimum Distance

Filtered Distance

Collission Avoidance Thrust

(a) Minimum Distance mapped to¿rust Magnitude using Low-Pass Filter

165 170 175 180

time [s]

-40

-20

0

P
it
c
h

 [
°]

PITCH

165 170 175 180

time [s]

-40

-20

0

20

R
o

ll
[°

]

ROLL

(b) Roll Pitch Behavior during Active Collision Avoidance with LP filter enabled

Figure 3.5: Collision Avoidance Behavior with LP filter enabled

47

6. SIMULATION RESULTS CHAPTER III. COLLISION AVOIDANCE

¿e LP filter is useful for reducing oscillations caused by instable measurements, but at the
same time increases the delay in the reactive control action. Indeed, comparing fig. 3.5b on
page 47 with the RPY behavior in the unfiltered version in fig. 3.4b on page 46, it can be observed
that the oscillations slightly decreased.

In fig. 3.5a on page 47 the peaks of unfiltered distance and thrust magnitude are not perfectly
aligned anymore, which is due to the introduced filter delay. Indeed the UAV gets closer to
the obstacle. A deeper evaluation reveals that the minimum measured distance in the chosen
maneuver is:

• 1.42m without LP filter

• 0.96m with LP filter

Although the introduced delay is rather small, it has a considerable impact. ¿e used filter
cut-o� frequency is 100 kHz allowing anyhow a fast reaction. Given the high frequency however,
also the e�ect of oscillation damping is almost negligible.

6.1 Qualitative Evaluation

Figure 3.6: Transmission
Tower

Generally the object avoidance yielded satisfying results in the
simulation, even though wrong recognitions, such as the distance
to the earth ground in case of an inclined vehicle, have been ob-
served. When the obstacle is unavoidable and presented a local
minimum the multicopter successfully stopped by canceling out
the position controller’s desired thrust.

Complex obstacles however, such as transmission towers given
in fig. 3.6 with a thin skeleton frame could not be avoided success-
fully. ¿is is due to the intrinsic poor information quality provided
by the 2D laserscan, i.e. just a distancemeasurement.

Anyhow, provided that the imposed trajectory roughly avoids
major obstacles, the resulting behavior is satisfactory.

6.1.1 Advantages and Disadvantages

To summarize, the pros and cons of the proposed method shall be
listed. ¿e disadvantages include:

• ¿e vehicle may get stuck in local minima, if the encountered obstacle’s shape presents
one and the position controller keeps imposing an orthogonal direction to the obstacle’s
surface

• No reference trajectory correction is planned, which implies that the time lost by sidestep-
ping obstacles may compromise the complete execution of the trajectory

• ¿e algorithm relies on reliable measurements, since no sophisticated filter e.g. for each
angular segment is adopted

• ¿e low cost hardware solution (see section 3.1 on page 38) yields a low sample rate which
is unfeasible for higher speeds

48

CHAPTER III. COLLISION AVOIDANCE 6. SIMULATION RESULTS

Among the advantages are:

• Easy, straight-forward implementation approach

• Low latency which fully exploits the sensor’s sample rate

• As a security measure, it is active in any possible flightmode

• No CC needed, since all is handled on the FCU, i.e. at firmware level

6.2 Comparison with other methods
In comparison to [8], the provided implementation has a lack of filtering options and focuses
less on obstacle detection. As many other works, [8] treats online obstacle avoidance using a goal
position, which was not feasible in the presented use case. However, the obstacle detection uses
the same 2D laser scan, but its data elaboration is more sophisticated and could be improved in
the proposed implementation.

[25] on the other hand, treats a very similar approach for providing a low cost collision
avoidance solution. For this purpose, in the former publication, a combination of infrared and
sonar distance sensors is used. A more sophisticated control, in PID manner and a the usage
of a FSM are proposed. However, the performance with active trajectory following has not
been evaluated. A deeper performance comparison is therefore rather di�cult, also because the
implementation is carried out on dedicated platforms, i.e. not using the famous PX4 so ware
bundle.

To the knowledge of the author, the proposed simple implementation in PX4 position controller
has not been considered so far.

49

Chapter IV

Experimental Results

In this chapter some practical results achieved during the Bambi Project are presented. ¿e
custom build drone is shown as a reference implementation, explaining the major drawbacks and
di�culties arisen during the project work.

1 Reference Implementation

¿e requiredminimum equipment for the Bambi Project mission drone is:

• Ground LIDAR to measure the altitude

• 2D laser scanner

• CC (i.e. Raspberry Pi)

• external GPS

• Pixhawk

• thermal camera

• visual camera

To mount those devices all together onto a standard drone frame is barely possible. ¿is is the
reason, why a custom build drone was constructed.

1.1 Drone Frame

A foldable drone frame has been designed building on carbon fiber tubes, mainly because of their
availability on the market, limiting the need for customized pieces to a few aluminum works.
Figures 4.1a and 4.1b on the following page show the 3D CAD design.

51

1. REFERENCE IMPLEMENTATION CHAPTER IV. EXPERIMENTAL RESULTS

(a) 3D Model Rendering

(b) Stress Analysis for weight reduction on Plates

Figure 4.1: Design Jobs carried out in Inventor

Figure 4.1 shows the design tasks carried out in Inventor.
Figures 4.2a and 4.2b on the facing page show some close-up of the physical frame. ¿e

52

CHAPTER IV. EXPERIMENTAL RESULTS 1. REFERENCE IMPLEMENTATION

(a) Revolute Joint allowing folding functionality (b) Arm Close-Up

Figure 4.2: Frame Realization

aluminum tube connectors have been realized by a Computer Numerical Control (CNC)machine.

53

1. REFERENCE IMPLEMENTATION CHAPTER IV. EXPERIMENTAL RESULTS

(a) Expanded

(b) Folded

Figure 4.3: Reference Drone

54

CHAPTER IV. EXPERIMENTAL RESULTS 2. BAMBI PROJECTWORK

1.2 Mounted Equipment

Not all of the planned equipment have been mounted yet. Figure 4.4 shows a selection.

(a) Pixhawk with external GPS

(b) Lidar for relative altitude measurements

Figure 4.4: Mounting of Components

2 Bambi Project Work

¿e Bambi project has been carried out in 17 intensive days. Figures 4.5a and 4.5b give some
impressions.

(a) Bambi Project Work (b) Soldering Tasks

55

3. FIELD EXPERIMENTS CHAPTER IV. EXPERIMENTAL RESULTS

3 Field Experiments

Various flight tests have been performed. ¿ey mainly involved the correct setup of the PID
regulators used for multicopter control. Unfortunately the OFFBOARDmode could not be tested
due to lack of time.

Figure 4.6 shows one of the typical agricultural fields where tests have been performed.

Figure 4.6: Test Sight on the Field

56

CHAPTER IV. EXPERIMENTAL RESULTS 4. LESSONS LEARNED

Figure 4.7: Drone Side View

¿e drone, almost ready to fly, from a side-view perspective, in fig. 4.7.

4 Lessons learned
¿emost useful practical lessons shall quickly be listed:

PID Tuning Unlike ArduPilot firmware, the new PX4 does not provide PID autotune procedure
for security reasons. For custom build drones, this implies that PID tuning has to be carried
out by hand which can eventually be dangerous. In the specific test case, the default PX4
parameters constituted an unstable system. ¿e following may help to prevent crashes:

• use the GeoFence parameters to enforce Return To Land (RTL) in case of danger
• in case of danger close the outer control loop by enabling some position trajectory
control (auto land, RTL, etc.) to stabilize the system

Electromagnetic Interference (EMI) pay attention to coupling of actuator currents and mag-
netic compass sensors. Increasing the distance between a�ected components and eventually
twisting the cables should be e�ective countermeasures.

Raspberry Pi Build times, especially of MAVROS may exceed practical limits (2 h to 3 h). A
cross compile setup can be very useful.

57

Chapter V

Conclusion and Future Work

¿is work provided an implementation approach, for controlling the position of an UAV in an
elegant way from a Companion Computer. ¿e currently most used systems such as ROS, PX4
and MAVLINK, have been exploited to improve the tracking performance and provide a low-cost
collision avoidance solution.

All the Bambi Project is available as open source so ware, hosted at github under https:
//github.com/BambiSaver. Some documentation is published on the special purpose
media-wiki under https://wiki.bambi.florian.world.

1 Future Work
¿ere are a lot of improvements for multicopter UAVs, in the agricultural field use case, to be
addressed:

1. Flight Time – Battery Performance

2. Sophisticated Collision Avoidance

3. Trajectory tracking performance enhancements

1.1 Trajectory Tracking
Although the provided solution of velocity feed forward control improved the overall tracking
performance, it presented overshoots of several meters, which is clearly unacceptable on the field.
Implementing also an acceleration feed forward path may improve the situation, together with
more sophisticated trajectory planning algorithms.

In particular the application of optimal control theory has been evaluated, but could not be
implemented due to lack of time. It was foreseen to use the optimal control framework proposed
by Nicola dal Bianco, available at https://github.com/stavoltafunzia/Maverick.
In the related PhD thesis lap time optimization using optimal control theory was implemented,
see [26]. ¿e problem can be modeled in an analogous way.

1.2 Collision Avoidance
One possible approach is to combine the currently used stereo-cameras for collision avoidance
with the low-level control action presented in this work. ¿e common approach to make online

59

https://github.com/BambiSaver
https://github.com/BambiSaver
https://wiki.bambi.florian.world
https://github.com/stavoltafunzia/Maverick

1. FUTUREWORK CHAPTER V. CONCLUSION AND FUTUREWORK

trajectory modifications may not always be suitable, as it was the case in the presented flight
mission. However, stereo vision systems could avoid the major drawbacks encountered with a 2D
laser scan, by improving obstacle detection.

A more straight forward improvement, perhaps avoiding unnecessary control actions, could
be, to integrate the component v20 from eq. (3.9) on page 39 into the thrust impact.

¿e proposed approach however,must be evaluated on an experimental system, in order to
be able to correctly judge its feasibility.

60

Appendix A

References

[1] T. Puls, M. Kemper, R. Küke, and A. Hein, “Gps-based position control and waypoint navi-
gation system for quadrocopters,” in 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Oct. 2009, pp. 3374–3379. doi: 10.1109/IROS.2009.5354646.

[2] A. Roberts and A. Tayebi, “Adaptive position tracking of vtol uavs,” IEEE Transactions
on Robotics, vol. 27, no. 1, pp. 129–142, Feb. 2011, issn: 1552-3098. doi: 10.1109/TRO.
2010.2092870.

[3] I. C. for Game and W. Conservation, “Mowing mortality in grassland ecosystems,” pp. 4–
10, 2013. [Online]. Available: http://www.cic-wildlife.org/wp-content/
uploads/2013/04/Mowing_guide_EN.pdf.

[4] K. S. Christie, S. L. Gilbert, C. L. Brown, M. Hatfield, and L. Hanson, “Unmanned air-
cra systems in wildlife research: Current and future applications of a transformative
technology,” Frontiers in Ecology and the Environment, vol. 14, no. 5, pp. 241–251, 2016.
doi: 10.1002/fee.1281. eprint: https://esajournals.onlinelibrary.
wiley.com/doi/pdf/10.1002/fee.1281. [Online]. Available: https://
esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/fee.
1281.

[5] Y.-G. Han, S. H. Yoo, and O. Kwon, “Possibility of applying unmanned aerial vehicle (uav)
and mapping so ware for the monitoring of waterbirds and their habitats,” Journal of
Ecology and Environment, vol. 41, no. 1, p. 21, May 2017, issn: 2288-1220. doi: 10.1186/
s41610-017-0040-5. [Online]. Available: https://doi.org/10.1186/
s41610-017-0040-5.

[6] J. G. A. Barbedo and L. V. Koenigkan, “Perspectives on the use of unmanned aerial systems
to monitor cattle,” Outlook on Agriculture, p. 0 030 727 018 781 876, 2018.

[7] V. Pirotta, A. Smith, M. Ostrowski, D. Russell, I. D. Jonsen, A. Grech, and R. Harcourt, “An
economical custom-built drone for assessing whale health,” Frontiers in Marine Science,
vol. 4, p. 425, 2017, issn: 2296-7745. doi: 10.3389/fmars.2017.00425. [Online].
Available: https://www.frontiersin.org/article/10.3389/fmars.
2017.00425.

[8] Y. Peng, D.Qu, Y. Zhong, S. Xie, J. Luo, and J. Gu, “The obstacle detection and obstacle avoid-
ance algorithm based on 2-d lidar,” in 2015 IEEE International Conference on Information
and Automation, Aug. 2015, pp. 1648–1653. doi: 10.1109/ICInfA.2015.7279550.

61

http://dx.doi.org/10.1109/IROS.2009.5354646
http://dx.doi.org/10.1109/TRO.2010.2092870
http://dx.doi.org/10.1109/TRO.2010.2092870
http://www.cic-wildlife.org/wp-content/uploads/2013/04/Mowing_guide_EN.pdf
http://www.cic-wildlife.org/wp-content/uploads/2013/04/Mowing_guide_EN.pdf
http://dx.doi.org/10.1002/fee.1281
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/fee.1281
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/fee.1281
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/fee.1281
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/fee.1281
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/fee.1281
http://dx.doi.org/10.1186/s41610-017-0040-5
http://dx.doi.org/10.1186/s41610-017-0040-5
https://doi.org/10.1186/s41610-017-0040-5
https://doi.org/10.1186/s41610-017-0040-5
http://dx.doi.org/10.3389/fmars.2017.00425
https://www.frontiersin.org/article/10.3389/fmars.2017.00425
https://www.frontiersin.org/article/10.3389/fmars.2017.00425
http://dx.doi.org/10.1109/ICInfA.2015.7279550

[9] N. Pokhrel, “Drone obstacle avoidance and navigation using artificial intelligence,” en, G2
Pro gradu, diplomityö, 2018-05-14, pp. 95 + 7. [Online]. Available: http://urn.fi/
URN:NBN:fi:aalto-201806012988.

[10] J. A. S. Jayasinghe and A. M. B. G. D. A. Athauda, “Smooth trajectory generation algorithm
for an unmanned aerial vehicle (uav) under dynamic constraints: Using a quadratic bezier
curve for collision avoidance,” in 2016 Manufacturing Industrial Engineering Symposium
(MIES), Oct. 2016, pp. 1–6. doi: 10.1109/MIES.2016.7780258.

[11] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadro-
tors,” in 2011 IEEE International Conference on Robotics andAutomation,May 2011, pp. 2520–
2525. doi: 10.1109/ICRA.2011.5980409.

[12] M. I. Ribeiro, “Obstacle avoidance,” Instituto de Sistemas e Robótica, Instituto Superio
Técnico, p. 1, 2005. [Online]. Available: http://users.isr.ist.utl.pt/~mir/
pub/ObstacleAvoidance.pdf.

[13] D. Jie, M. Xueming, and P. Kaixiang, “Real-time dynamic obstacle avoidance for mobile
robots,” in 2010 11th International Conference on Control Automation Robotics Vision, Dec.
2010, pp. 844–847. doi: 10.1109/ICARCV.2010.5707283.

[14] J. Kümmerle, T. Hinzmann, A. S. Vempati, and R. Siegwart, “Real-time detection and track-
ing of multiple humans from high bird’s-eye views in the visual and infrared spectrum,”
in Advances in Visual Computing, G. Bebis, R. Boyle, B. Parvin, D. Koracin, F. Porikli, S.
Ska�, A. Entezari, J. Min, D. Iwai, A. Sadagic, C. Scheidegger, and T. Isenberg, Eds., Cham:
Springer International Publishing, 2016, pp. 545–556, isbn: 978-3-319-50835-1.

[15] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,
“Ros: An open-source robot operating system,” in ICRAWorkshop on Open Source So ware,
2009.

[16] J. M. O’Kane, A Gentle Introduction to ROS. Independently published, Oct. 2013, Available
at http://www.cse.sc.edu/~jokane/agitr/, isbn: 978-1492143239.

[17] M. P. Ananda, H. Bernstein, K. E. Cunningham, W. A. Feess, and E. G. Stroud, “Global
positioning system (gps) autonomous navigation,” in IEEE Symposium on Position Location
and Navigation. A Decade of Excellence in the Navigation Sciences, Mar. 1990, pp. 497–508.
doi: 10.1109/PLANS.1990.66220.

[18] J. W. Hager, J. F. Behensky, and B. W. Drew, “The universal grids: Universal transverse
mercator (utm) and universal polar stereographic (ups). edition 1,” DEFENSE MAPPING
AGENCY HYDROGRAPHIC/TOPOGRAPHIC CENTER WASHINGTON DC, Tech.
Rep., 1989.

[19] U. Breymann, Der C++-Programmierer: C++ lernen - professionell anwenden - Lösungen
nutzen. Hanser, 2011, isbn: 9783446428416. [Online]. Available: https://books.
google.it/books?id=x%5C_J4uAAACAAJ.

[20] F. N. Fritsch and R. E. Carlson, “Monotone piecewise cubic interpolation,” SIAM Journal
on Numerical Analysis, vol. 17, no. 2, pp. 238–246, 1980.

[21] H. W. Smith and E. J. Davison, “Design of industrial regulators. integral feedback and
feedforward control,” Proceedings of the Institution of Electrical Engineers, vol. 119, no. 8,
pp. 1210–1216, Aug. 1972, issn: 0020-3270. doi: 10.1049/piee.1972.0233.

62

http://urn.fi/URN:NBN:fi:aalto-201806012988
http://urn.fi/URN:NBN:fi:aalto-201806012988
http://dx.doi.org/10.1109/MIES.2016.7780258
http://dx.doi.org/10.1109/ICRA.2011.5980409
http://users.isr.ist.utl.pt/~mir/pub/ObstacleAvoidance.pdf
http://users.isr.ist.utl.pt/~mir/pub/ObstacleAvoidance.pdf
http://dx.doi.org/10.1109/ICARCV.2010.5707283
http://www.cse.sc.edu/~jokane/agitr/
http://dx.doi.org/10.1109/PLANS.1990.66220
https://books.google.it/books?id=x%5C_J4uAAACAAJ
https://books.google.it/books?id=x%5C_J4uAAACAAJ
http://dx.doi.org/10.1049/piee.1972.0233

[22] K. Ahnert and M. Abel, “Numerical di�erentiation of experimental data: Local versus
global methods,” Computer Physics Communications, vol. 177, no. 10, pp. 764–774, 2007,
issn: 0010-4655. doi: https://doi.org/10.1016/j.cpc.2007.03.009.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0010465507003116.

[23] A. Cardamone, “Implementation of a pilot in the loop simulation environment for uav devel-
opment and testing,” 2017. [Online]. Available: https://www.politesi.polimi.
it/bitstream/10589/135202/3/2017_07_Cardamone.pdf.

[24] D. Brescianini, M. Hehn, and R. D’Andrea, “Nonlinear quadrocopter attitude control.
technical report,” en, Tech. Rep., 2013. doi: 10.3929/ethz-a-009970340.

[25] N. Gageik, P. Benz, and S. Montenegro, “Obstacle detection and collision avoidance for a
uav with complementary low-cost sensors,” IEEE Access, vol. 3, pp. 599–609, 2015, issn:
2169-3536. doi: 10.1109/ACCESS.2015.2432455.

[26] N. D. Bianco, R. Lot, and M. Gadola, “Minimum time optimal control simulation of a gp2
race car,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automo-
bile Engineering, vol. 232, no. 9, pp. 1180–1195, 2018.doi:10.1177/0954407017728158.
eprint: https://doi.org/10.1177/0954407017728158. [Online]. Available:
https://doi.org/10.1177/0954407017728158.

63

http://dx.doi.org/https://doi.org/10.1016/j.cpc.2007.03.009
http://www.sciencedirect.com/science/article/pii/S0010465507003116
http://www.sciencedirect.com/science/article/pii/S0010465507003116
https://www.politesi.polimi.it/bitstream/10589/135202/3/2017_07_Cardamone.pdf
https://www.politesi.polimi.it/bitstream/10589/135202/3/2017_07_Cardamone.pdf
http://dx.doi.org/10.3929/ethz-a-009970340
http://dx.doi.org/10.1109/ACCESS.2015.2432455
http://dx.doi.org/10.1177/0954407017728158
https://doi.org/10.1177/0954407017728158
https://doi.org/10.1177/0954407017728158

Appendix B

Supplementary Information

1 List of Figures

1.1 Waypoint Generation So ware . 2
1.2 Saved fawn . 3
1.3 ¿ermal capture of fawn . 4

2.1 Basic System Architecture . 7
2.2 Pixhawk . 9
2.3 NED Frame . 12
2.4 ENU Frame . 12
2.5 World Geodetic System . 14
2.6 UTM Grid . 15
2.7 ROS-Graph of trajectory-following related ROS nodes 15
2.8 Mission Controller Finite State Machine . 18
2.9 Flight Controller Finite State Machine . 19
2.10 Sample Coverage Path . 24
2.11 Spatial sampling of the geometric path . 25
2.12 Velocity Vector Plot . 29
2.13 Simulation Architecture . 30
2.14 Gazebo Simulated 3DWorld . 31
2.15 Simulated IRIS Model . 31
2.16 Simulation Standard Position Tracking Performance 32
2.17 Simulation Velocity Feed-Forwarding Tracking Performance 33
2.18 Simulation Position Tracking Comparison . 33
2.19 Position Error Comparison . 34

3.1 PX4 Multi Copter Controller Diagram . 37
3.2 Weight Function Plot . 40
3.3 Collision Avoidance normalized¿rust Impact in XY [NED] 45
3.4 Collision Avoidance Behavior . 46
3.5 Collision Avoidance Behavior with LP filter enabled 47
3.6 Transmission Tower . 48

4.1 Design Jobs carried out in Inventor . 52

65

4.2 Frame Realization . 53
4.3 Reference Drone . 54
4.4 Mounting of Components . 55
4.6 Test Sight on the Field . 56
4.7 Drone Side View . 57

2 List of Tables

2.1 General MAVLINKMessage Format . 9
2.2 Flight Controller State Transition Table . 20
2.3 Position Tracking Error Comparison . 34

3.1 MAVLINK Obstacle Distance Message Definition 41

3 List of Listings

2.1 Relevant Bambi ROS message definitions . 17
2.2 Position Target (Setpoint) Message Definition . 18
2.3 Flight Controller Class Definition . 21
2.4 Setpoint publishing in FlightController . 22
2.5 WGS84 to ENU coordinate frame converstion . 23
2.6 Setpoint object preparation in TrajectoryGeneratorNode 27
2.7 Derivative calculation in TrajectoryGeneratorNode 28

3.1 Iris RPLidar Configuration . 42
3.2 Collission Avoidance¿rust Calculation . 43
3.3 Collission Avoidance¿rust Application . 44

4 List of Algorithms
2.1 Constant Velocity Setpoint Generation . 26

66

Appendix C

Glossary

Bambi Project is a project involing the usage of an UAV for saving animals in mountainous
grassland agriculture fields by using a thermal camera to detect their body heat. 1, 2, 10, 15,
16, 19, 20, 30, 37, 51, 59

C++ is a general purpose programming language with inter alia object-oriented features. 20, 28

Companion Computer is an auxiliary on-board computing device, which communicates with
the FCU to usually handle high-level flight tasks such as computer vision. vii, 6, 7

Flight Control Unit is usually a microcontroller which performs the main flight control tasks,
such as stabilizing the vehicles attitude or holding the position, by running a flight controller
so ware such as PX4. iii, v, vii, 5, 7

I/O Device is a device which exchanges data with the Central Processing Unit (CPU) through
an I/O port, e.g. a hard disk drive. vii, 68

I/O Port is an electronic component integrated in the CPU bus system which enables connected
devices to exchange data with the CPU, e.g. a serial port. vii, 67, 68

Microcontroller is a small computer on a single integrated circuit. 67

Multicopter or multirotor is a rotor-wing aircra with more than two rotors, providing the
advantage of simpler rotor mechanics (e.g. typically no swashplate needed). iii, 8, 19, 35, 38,
48, 56

Open Source So ware is free so ware distributed under a license which grants access to the
source code. 30, 59

Pixhawk is an open source hardware platform developed for the PX4 project. 7, 9, 10, 19, 51

PX4 is the professional autopilot, a widely used flight controller so ware inter alia for multi
copters. 5–8, 10, 13, 19, 20, 22, 23, 27, 29–31, 35, 37, 38, 40–42, 44, 49, 57, 59, 67

Raspberry Pi is a open-source single-board computer. 7, 8, 10, 51, 57

Robot Operating System is a development environment which provides libraries and tools for
creating robot applications. iii, v, vii, 6

67

Universal Asynchronous Receiver-Transmitter is a serial Input / Output (I/O) communication
port with configurable transmission speeds and data formats.. viii, 9

Universal Transverse Mercator is a coordinate system which maps global positions to a defined
set of local 2-dimensional Cartesian reference frames by transverse mercator projection. viii,
13

World Geodetic System is a standard in cartography used for global navigation (also in GPS)
which approximates the globe through a reference ellipsoid in di�erent versions: the latest is
WGS 84. viii, 10, 13

68

	Abstract
	Abstract (italiano)
	Acronyms
	Contents
	Introduction
	Motivation
	Trajectory Following
	Collision Avoidance
	The Bambi Project
	Importance in Agriculture

	General UAV usage for Wildlife Tracking
	Summary

	State of the art
	Trajectory Following
	Waypoint Navigation

	Collision Avoidance
	Related Publications

	Innovation
	Thesis Outline

	UAV Position Control
	System Architecture
	PX4
	Flight Modes Overview
	MAVLINK
	Interfacing Options

	MAVROS

	Problem Description
	Mathematical Definition of the Control Problem

	Coordinate Frames
	Local Reference Frames
	NED Frame
	ENU Frame
	RPY Angles

	Global Reference Frames
	WGS 84
	UTM

	ROS Node Architecture
	Problem Division
	Relevant messages definitions
	Mission Controller
	Flight Controller
	Implementation
	Relative Altitude Handling

	Trajectory Generator

	Constant velocity trajectory
	Velocity Feed Forward Control
	Implementation

	Simulation Results
	SITL Environment
	Gazebo
	Simulated 3D World

	Tracking Performance Evaluation

	Collision Avoidance
	Use Case Analysis
	Control Signal Application
	Distance Sensing
	Available Hardware

	Collision Avoidance Thrust Definition
	Thrust Magnitude

	Implementation
	MAVLINK Message
	Gazebo Laser Scan

	PX4 Firmware Modification
	Thrust Application
	Logging

	Simulation Results
	Qualitative Evaluation
	Advantages and Disadvantages

	Comparison with other methods

	Experimental Results
	Reference Implementation
	Drone Frame
	Mounted Equipment

	Bambi Project Work
	Field Experiments
	Lessons learned

	Conclusion and Future Work
	Future Work
	Trajectory Tracking
	Collision Avoidance

	References
	Supplementary Information
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms

	Glossary

